ON-LINE ESTIMATION OF THE OXYGEN-MASS-
TRANSFER COEFFICIENT AND OTHER STATE
VARIABLES IN A CHEMOSTAT

Joseph J. Vallino

Research Report Submitted in FPartial
Fulfillment of the Requirements for the Degree
of Master of Science in Chemical Engineering

Department of Chemical Engineering
California Institute of Technology
Pasadena, Catifornia

May 20, 1985



ABSTRACT

An adaptive Kalman filter is used to estimate the values of the oxygen-
mass-transfer coefficient, the biomass, substrate, and dissolved oxygen concen-
trations, the specific growth rate, and the substrate, and oxygen yield
coefficients in a chemostat under steady state and transient conditions frem on-
line measurements of the oxygen consumption rate, the carbon dioxide produc-
tion rate, and the dissolved oxygen concentration. An adaptive procedure is
incorporated into the filter algorithm to account for modeling errors. The true
states and measurements are simulated by a computer so that the performance

of the filter can be evaluated.

It is found that the filter algorithm developed'works quite well for estimat-
ing all states except the substrate concentration. The substrate concentration
estimate becomes chaotic at low concentrations due to the nonobservability of

this state.
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1. INTRODUCTION

Knowledge of the oxygen-mass-transfer coefficient, k;a, in a biochemical
reactor is necessary to determine the point at which the oxygen requirements of
the microbes can no longer be meet, and the process should be shut down. How-
ever, there exist no accurate methods for the determination of k;a on-line or
even off-line, although several papers have been published [1-4]. Most of these
current methods incorporate some kind of transient studies, which are not suit-
able for on-line estimation. Not only is ke important, but such variables as
biornass and substrate concentrations are also required for control purposes.
Some of these variables can be measured off-line; however, the turn around time
for ofI-line analysis is too long for control implementation. It is the goal of this
study to devise an implementable procedure for the on-line estimation of k.o

and other variables in a chernostat under steady state and transient conditions.

Any process can be completely described by a set of parameters, which k;n
is a member of, called state variables. A procedure for estimating these state
variables was devised by Kalman [5] for discrete systems, and later improved by
Kalman and Bucy [6] for continuous systems. This procedure is ideally suited for
digital computers. Called a Kalman filter, the differential equations that model
the process are solved to obtain estimates of the states. Since no system can be
modeled exactly, measurements of the system provide the necessary informa-
tion needed to update the estimates. This updating allows the estimates to con-
verge to their true values even when given poor initial values and in the pres-
ence of modeling errors. The filter algorith_m also incorporates some adaptive
capabilities so that the state equations used will work on practically any
chemostat. It should also be noted that the filter acts as an observer. That is,
state variables that are not directly measured can still be estimated from infor-

mation provided by the state equations. Consequently, the Kalman filter is
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much more informative than simple averaging filters, which can only estimate

variables that are directly measurable.

In this study the state variables of interest are: the oxygen-mass-transfer
coefficient, k;a, the biomass, substrate, and dissolved oxygen concentrations, b,

s and, [0z]g. the substrate and oxygen yield coefficients, ¥;, and Yog. and the

specific growth rate, u. The governing Kalman filter equations are described in

the next section.

The filter algorithm developed in this paper has the further advantage of
being virtually independent of the microbe. And although the algorithm is dev-
ised for a chemostat, the governing equations can easily be changed to accom-
modate batch and fed batch reactors. It is assumed that only biomass is pro-
duced in the chemostat, however, the program can be adjusted to accommodate
product formation as well. For a FORTRAN listing of the filter program see

Appendix 1i

To check the performance of the filter algorithm, the chemostat is simu-
lated by a computer so that the state estimates can easily be compared to their
true values. Basically the simulation generates data for the true states for com-
parison, as well measurement information that would be obtained by on-line
analysis for the filter. The program that simulates the chemostat is also

presented in Appendix IL
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2. KALMAN FILTER EQUATIONS

All state variables can be described by the following nonlinear differential

vector equation
x(t) = f(x(2).t) + G(¢)w(t). (1)

The state, x(¢). is a continuous function of time, where as the measurement vec-

tor equation,

y(t,) = h(x(te).6) + w(1,) (2)

is discrete in time due to the inherent nature of sampling. Both the state and
the measured variables are corrupted by noise, w(t), and v({;), which is assumed
to have a gaussian distribution and a zero mean. The state noise, w{¢), is

described by the state-noise spectral density matrix Q(¢) which is given by
efw(t)wl(r)] = Qt)(t~) (3)

The measurement-noise covariance matrix, R(f,), describes the measurement

noise, ¥(f;), and is given by
E{v(te )V (1)} = R(tx) O (4)

where £} ] is the expectation operator, (¢ —7) is the Dirac delta function, and
Oy is the Kronecker delta. 1t is further assumed that the state and measure-

ment noise inputs are uncorrelated so that

elw(t)vT(t)1=0 for all £ and k. (5)

Since the true state, x(¢), is unknown it is desired to produce an estimate

of the state, %(¢), which minirmizes the cost function J given by

7= [o(t) - n(x(6).8)] [(te) - () .8)] (6)

where J simply represents the sum of the error, in the estimate, squared.
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Based on this minimization technique it is possible to obtain a set of recursive
equations which produce the best estimate of the state for a continuous-
discrete system. The derivation of these equations is too involved to explain

here and can be found in Jazwinski {7] or Gelb [B].

The extended Kalman filter equations consist of the prediction between

samples
&(t) = 1(%(2).t) (7)
P(t) = F(&(t).t) P(t) + P(t)FT((t).t) + G(t) Q(t) G(t) (8)
and the updating there of at an observation

Rty 1| ter) = Kt |80) + Kltp 1) [Flte2) = BR(ber [ 80D 81 02) (9)

Pty oy tesr) = |1 — Kltp o) H(Eg o1 (g o |tt))]P(tt+l ) (10)
where the Kalman gain is given by

Kty s1) = Pty tk)HT(tkuii(tku |t))

X [H(ty 0118t 01 |80) Plti oy 166) Bty Rt s |60)) + RG] (1)

and
Fiz(t).e) = ZEEL (12)
0x(t)  |ue)=xt
Bh{X{fx +1) i +1)
H{tp o E(te 1 | 8)) = . 13
ik o+ ( k+1| .I:)) BX(tgg.l) l(‘g+1)=i(‘g+| ‘g) ( )
The P matrix is the covariance of the state-estimate error and is given by
Plte |4) = £ Xty | te) X7 (t 1)} (14)

where



Xty |8) = X(te [8a) — x(ty). (15)

It should be noted that the magnitude of the Kalman gain matrix K is predom-
inately effected by the state error covariance matrix, P{f {£;). Simply stated P
represents the magnituted of the assumed error in the state estimate with

respect to the true state.

The complicated nomenclature used in the Kalman filter equations is neces-
sary to express the relationships between the discrete measurements and the
continuous state variables. In this manuscript the following conventions will be
used. The expression %(t, |¢;) represents ¥ at time £, evaluated from the meas-
urements, y(f,), taken at time t;. The expression £(f..; |f;) represents & at time
ty+1 but predicted from the measurements that were taken at time ;. These

conventions also hold for P,
2.1 Discrete State Equation

It can be seen from equations (7) and (B) that the number of differential
equations that must be solved grows as the square of the state dimension since
Pis an M x M matrix. For large systems this can cause convergence problerns
for numerical integrators as well as an unacceptably long computation time. To
increase computational speed and reduce convergence problems, equation (B)

can be put in discrete form as follows

Ptyarlte) = O[tpar b ] P(te | 6e) T 1. ke ]

+ Tt et ] Q) Tt s 1 e ] (16)

where the state transition matrix, 9, is given by

Btk 1.te] = exp[F(R(te | £6).8e) (tin — )] (17)

and
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Tt IQUET [t 1 fe] = f [ty 11, TIG(TIYTIGT (1)@ [t 7] T, (18)
b

The discrete noise vector w(f.), is described by the state-noise covariance

matrix, Q(f). which is given by
eiwlte)wi(t)] = Q) On- (19)

Note that the state-noise covariance matrix, Q(Z.). is different from the state-
noise spectral density matrix, Q(¢), which is used for continuous systems. It is

assumed that F(%{(f, | £,).tx) is invariant over the sampling period.

The continuous state equation, (1), can also be put in discrete form;
(e o1) = O[te b JX(t) + Ttk telwity) (R0)

however, thus is not usually necessary since the continuous state equation is
usually integrated easily and is more accurate. Although less accurate, it turns
out that the loss in precision by discretizing P(t) is warranted by the increase
in computational speed. Also, in discretizing the equations there is a further
advantage. The state transition matrix, I#; 4,8 ]. distributes the noise to the
state variables where as G{t), in equation (1), distributes the noise to the
derivative of the state variables. Since noise addition is usually determined by

intuition, it turns out that it is easier to construct Ttg.y.2e].

Consequently, in the filter algorithm prediction across the sampling period

is accomplished by

fe 41

R(ten |te) = K 11) +_f HR(E4)) at (21)
&

and equation (B) is replaced by equation (16).



2.1.1 The State Transition Matrix

To diseretize the continuous state and state-error covariance differential
equations, (7), (B), the state transition matrix, $[#,4,.£¢], must be calculated.
First the Jacobian matrix of f(x{¢),t) must be determined as given by equation
(12), and evaluated at ®(f;|f;). Although not necessarily true, it is a good
approximation to assume that the Jacobian matrix is constant over the sam-
pling period so that equation (17) can be applied, otherwise ®[£;,;.tx] would
have to integrated across the sarnpling period which is much more difficult and
time consurning. This leaves one with the calculation of the matrix exponential.
It can be shown [9] that the matrix exponential can easily be calculated when
F(&{f. | £:).t,) is placed in Jordan canonical form. However, this method can
cause large errors on finite arithmetic machines because eigenvalues that are
distinet may be processed as nondistinct and vice versa due to the finite preci-

sion of these machines. Therefore, one must resort to anocther method.

It can also be shown [9] that the matrix exponential can be approximated

by a Taylor
A N
exp(A)=1+A+ T tE (22)
where
A’ = AAA  etc (23)

This method works well on comnputers only if the norm of the matrix is not too
large. If it is, then the finite precession of the computer can produce significant
rounding errors. However, Ward [10] explains an algorithm that can handle
matrices with large norms. The main features of this algorithm are explained

beiow.
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To reduce the 1-norm of the matrix before exponentiation, it is balanced by
similarity transforms which produces a diagonal matrix. This is explained by
Parlett and Reinsch [11]. To assure that the 1-norm of the diagonal matrix is
less than unity, a integer, 7, is found such that 277! < |[F)|l; < 2’. Then the new

matrix is given by
— o-j . | r,_[ r)?
F,=27F, B |IFell <1 and e " =|e . (24)

Thus the exponential of F; is determined by calculating the exponential of F;
and squaring the result j times. A Pade' approximation is used to calculated
the exponential of F,. The Pade’ series is similar to the Taylor series except that
it converges in fewer terms, so the number of matrix multiplications is reduced.
This works quite well on a computer since Fp has a‘ 1-norm less than unity. The

final result is obtained by inverting the similarity transformations.

This algorithm has one more advantage in that it gives the number of
significant figures in the l1-norm of the resuit. Thus this routine gives some
warning when it fails. Although there are many technigues for calculating the
matrix exponential [12], this one seems to work the best. The FORTRAN pro-

gram for this algorithm is presented in Appendix II.
2.2 Outline Of The Filter Algorithm

Figure 1 illustrates a graphical representation of the filter algorithm. At
time £, where the value of 2{¢; [¢,) and P(f; |¢;) have been calculated from the
previous sample instance, equations (21) and (18) are used to predict ¥(fx; |1x)
and P(f; . ]%:) across the sampling period, respectively. At time £;,, a measure-
ment is taken and the state and its assor;iated uncertainty are updated to
®(ty 1| te+1) and P{ti 4, £ 4q) via equations (9) and (10) respectively. The amount
®(ty+1 | £e) differs from ®{(f; |tz 1) depends on the magnitude of the Kalman gain

matrix K(f;+,) and the size of the residual r{f; ., | %)
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Figure 1. Qualitative description of the discrete Kalman filter over one sam-

pling period.

F(tpaylte) = Y(tk-l-l)-h(i(tkﬂ | £} te41)

(25)

as can be seen from equation (8). The magnitude of the Kalman gain is propor-

tional to the uncertainty in the state, P(t;4; |ty41). and inversely proportional to

the uncertainty in the measurement, R(f;+,). Hence as the state-estimate accu-

racy increases, smaller P{t,; |f+1). the weighting on the measurements become

smaller. Similarly, if the measurements have a high uncertainty, large R(fg+1).
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then K(fc,;) is small and again the measurements are not weighted strongly.
This relationship is important for understanding why the filter estimate might
diverge from the true state. Divergence and counter measures there of will be

discussed later in section 3.
2.3 State Equations Used In The Algorithm

In order to model a process a set of variables must be chosen that ade-
quately describe the state of the process at any time. Not only must the vari-
ables be determined, but also how the derivative of each variable with respect to
time is related to the other state variables, However, due to the finite computa-
tional speed of the computer and the limited knowledge of a particular process,
a subset of these state variables are used in actual practice. If an adequate esti-
mate is to be obtained, the subset chosen must be those variables that have the

greatest influence on the total state of the system.

For a chemostat the following set of differential equations are used to

describe the state.

b=blu-D) (26)
§ =D(s; -s) - .% (27)
f=c, (28)
6,=0 (R9)
Y, =0 (30)
[0ela = kza ([051a — [Ocla) = 42 (31)

(4

k;:a. =cp (32)
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62 =0 (33)

Yoe =0 ( 34)

where D, s, and [0]q. are parameters that are known or easily measured, so no
filtering is necessary. Since ITfy.,.fy]. not G(t), is to be determined, the state
noise is accounted for in the discrete version of these equations. See section 3.2.
Note that these equations are non specific and can be used for any microbe so

leng as no product is produced.
2.3.1 Choice Of The State Equations

For the biomass, substrate, and dissolved oxygen concentrations, simple
mass balance equations are used, but they are quite accurate descriptions.
Since biological processes are inherently complicated. it is impossible to derive
differential equations that describe the specific growth rate, 4, the substrate or

oxygen yleld coefficients, ¥;.Yp,. or the oxygen-mass-transfer coefficient, k o, If

these variables were constant through out the duration of the process there
would be no need to incorporate them in the state vector; however, since they do
change with time, some form of differential equation must be used to describe
them. For the yield coefficients it is assumed that their dynamics are slow
enough so that they can be approximated as constants across the sampling
period. Thus their derivatives are set to zero. Any change in the estimated value

of ¥; or Yo, comes about during updating at the sampling instant via equation

(9). The specific growth rate and k;a were found to follow the true state more
accurately if they are allowed to foliow a ramp during the interval between sam-
pling. The slop of the ramp is determined by the size of the residuals, equation
{(25). This will be discussed in the section on the adaptive @ matrix. See
Stephanopouls and Ka-Yiu San [13] for other approximations of the state equa-

tions.
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2.4 Measurement Equations

In most processes the variables that can be measured are often some non-
linear combination of the state variables. For a chernostat the measured vari-

ables are related to the state variables as follows

R™ = b +uy(t) (35)
= Ys + velty) (36)
YB. = Yo, + vslty) (37)
(0] = [Ogla + v4lte) (38)
Rg, =kra ([02]a — [Oela) + vs(ty) (39)

where v;(t;) represents the noise in the measurements and ™ and R§, are the

rate of biomass production and the rate of oxygen consumption respectively.
How these variables are measured is explained fully in sever papers by
Stephanopoulos et. al. {13-16] and Cooney, Wang, and Wang [17], however, a

brief description follows.

In order to obtain an accurate estimate of the state many samples must be
taken per unit time. Currently there exist only a few instruments in industry
that are capable of sampling at a high enough frequency to meet the require-
ments of the filter. These instruments are able to measure the Oz and CO; con-
centrations in the entrance and exit gasses of a chemostat, as well as the dis-
solved O, concentration in the broth. It is possible to determine the values of
the above measured variables from these measurements if a stoichiometric

equation is assurned for the growth of the microbe. Such a balance looks like
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|+ C,H.HO, + 7 Og + CNH; . uH'ﬁO'rNG + ngO + € COZ
carbon energy oxygen ammonia cell water carbon (40)
source biomass dioxide

where it is assumed that the empirical formula for the carbon energy source
and the cell biomass are known, and that there is no product formation. Then
the only unknowns in this equation are a, ¢, d, e, and g. These 5 unknowns can
be determined from four elemental balances and the measurement of the rate
of Oz consumption and COp production. Once the five unknowns are determined

the yield coefficients are given by

Y8, = —"‘Q‘;"’;“ (41)
_ (MW, :
T = “ge (42)

and the rate of biemass production and oxygen consumption can be determined

from
R™ = Yg, (grams of O, consumed) (44)
R, = (grams of Oz consumed). (45)

Dissolved oxygen concentration is simply measured by a probe in the broth.
Note that the above measurement procedure is the only part of the filter algo-

rithm that is specific for a particular microbe.
2.4.1 Smoothing Of The Heasurements

To eliminate spikes produced by noise, the measurement vector is averaged
and smoothed before it is fed into the fiiter algorithm. These two routines are

explained below.



-14 -

Since data can be acquired at a higher frequency than it can be processed
by the computer, it would be wasteful to ignore that data which is obtained in
this period. Consequently the filter algorithm is set up such that the computer
samples data at frequency f; while actual measurements are taken at a higher
frequency, f.. All samples taken at the higher frequency, f; are averaged over

the time period, 1/ f, to produce one point every 1/ f, time units.

The averaged points are smoothed further by a least squares technique
around a given polynomial. This technique uses the moving window approach,
that is only m points back from the current measurement are used. In essence
a polynomial of desired order is drawn through the current measurement and
the previous m points such that the squared error is minimized. The current
point is then adjusted to fall on this curve. See Figure 2. This routine has the
advantage that once the degree of the polynomial and the size of the window
(i.e. m) are chosen, the past m points and the current point need only be multi-
plied by a predetermined constant (ie. convolute). Consequently, computa-
tional time is negligible. See Savitzky and Golay { 18] and Steinier [19] for a more

detailed explanation.
A block diagram of the measurement procedure is shown in Figure 3.
2.5 Observability

When the state and measurement equations are analyzed it can be shown
that the substrate concentration is an unobservable state. However, this is not
as big a problem as it first might seem. Since the governing equation for the
substrate concentration, (27), is well known, the filter gives a reasonable estima-
tion of this state so long as the assumed initial conditions are close to their
actual values. Divergence does become a problem at low substrate concentra-

tions {i.e. < 0.1 g/1), as will be shown from simulations. Possible solutions to
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this problem are discussed later in section 6
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ﬂ

/" ESTIMATE OF STATE, £{t, {t,)

Figure 3. Block diagram of measurement procedure.

3. ADAPTIVE STATE-NOISE COVARIANCE MATRIX
The Kalman filter equations can be manipulated in in such a way to produce
K(ter1) = Pl or [t o) H (41 R0t 11 | £)) Rte o). (46)

which reduces the complexity of the gain equation so it can be evaluated quali-
tatively. Consider the following. If for any reason the gain becomes small the

filter will ignore the measurements no matter how large the residuals are.
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Under this situation the Kalman filter reduces to a simple differential equation
solver. Consequently if the state equations do not model the system closely the
estimate will diverge from the true state because no updating occurs. Since the
matrices H(f+1:%(¢k+1]f:)) and R(t,,;) do not change much for a given system,
most changes in K(i;,,) are due to changes in the state-error covariance matrix,
P(ty+1)tc+1). Divergence can occur when P(fy,;|{y+)) becomes unrealistically
small, that is, P{fx,,|%+1) no longer gives an accurate assessment of the error
in the state estimate. This is exactly what is observed to happen when the state
equations given above, (28-34), are used to model the chemostat since many of
them do not describe the system accurately. To keep the state from diverging,
P(fy+y L +)) must not be allowed to become unrealistically small. One way of

doing this is through the state-noise covariance matrix Q(t;).

Ideally the state-noise covariance matrix describes the noise in the equa-
tions that represent the true state equation. Unfortunately as mentioned above
the true state equations are unknown, consequently, it is very difficult to con-
struct Q(£;). The difficulty in constructing Q(fz) can be over come by incor-
porating feed back from the residuals to determine Q(f.). In this way filter

divergence can be observed and avoided.
3.1 Algorithm For Determing Q{f;)

To keep P(t |t;) from becoming unrealistically small, Q{f;) can be adjusted
in such a way to compensate for model errors. Since the residuals indicate
when divergence starts to occur, it is desirable to use them for the determina-
tion of Q(t;). Jazwinski [20,21] has shown that Q) should be chosen in such a
way to produce the most probable predicted residuals. Based on this idea Q(f;)

can be determined from the following set of equations.

Let
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25 = [Flte o1 18 FT(0n 01 [£2) = Retyn)
— (41 R(Eg o1 [ £2)) D[t o1 Le ] Plte [ £a)

X 8T [tg o1t JHT (bR (Er 4 !tk))]ﬁ Oy (47)

Now it is assumed that the measured variables, and consequently the residuals,

are uncorrelated, so

Q(ty) = diag { g11. 22, - - -, I} (48)

where N is the dimension of the measurement vector, y{t,). The state-noise

covariance matrix is then given by

Gui(te) = [[H(tk w1 & (te sy [Ee)) P':tki-l-tk]]_l /

. -1
X [:'T!t.l;n-tx]HT(ttH-'i(tk“:t“))] ]“ “
ffﬁ(tk) ifz; >0
Gulte) = { 0 otherwise °

where z;; is an element of Z These equations are some what ad hoc and will not
stand up to rigorous statistical analysis. Nonetheless, they are used in practice
since they produce good results. The state-noise covariance matrix now
depends on how accurately the current estimate is approximating the true

state, and so demonstrates an adaptive behavior.

The adaptive nature of Q{{,) is explained as follows. At each measurement
the residual vector can be determined from equation (25). Subtracted from this
are the current uncertainties in the measur:ement, R(t;), and in the state esti-
mate as given by equation (47). If this value, 2y, is greater than zero, then there

exists some noise unaccounted for and hence must be due to either state noise
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and/or model error. In either case the Q(f,) matrix takes on a value propor-
tional to this error via equation (49). Subsequently, the state-error covariance
matrix P{x+;|£) is increased by this amount via equation (16). As mentioned
above this increase in P{f;,,|f;) will increase the Kalman gain and cause the
filter to open to incoming measurements which will adjust the state to its
correct value. If z; is less than zero then the filter is operating satisfactorly

and there is no need to adjust P(f, . |f;).

Note that the adaptive feature of Q(#;) in the filter algorithm is very impor-
tant. When simulations were run with out it the state estimate diverged dramat-
ically from its true value. This is mainly due to the poor modeling of the

chemostat and not the measurement noise.

3.1.1 Improvement On Q(f;)

Since only one residual is used to determine Q(f;), a spike in the measure-
ment can cause the gain to increase unnecessarily. These wild observations
allow noise to pass through the filter. To avoid this the Q(£,) matrix is averaged

over n points as follows

tkm) - ;11"' i lt(tkﬂ.) (51)

The condition given by equation (50} is then applied to §3(f;.+n) to obtain Q(t;).
Another way to elimate spikes from Q(f,) is to place an upper bound on gy(f:).

however, this is not done in the filter program.
3.2 Determination Of The Noise Transition Matrix

As can be seen from equation (20) the noise transition matrix, ¢ ,1.8] .
determines how elements of the state-noise vector, w(t,), are distributed among
the state variables. As mentioned before G(¢) (continuous case) is different

from I[¢,.1.6,] (discrete case) in that G(t) adds noise to the derivative of the
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state variables. Since either matrix must usually be determined by intuition,
there is no need to integrate equation (18) to fine ITf;+,.t;]. it can be deter-

mined directly.

The adaptive feature of the algorithrn discussed in the previous section
depends strongly on how [I[f,,,fx] is constructed. Incorrect modelling of
T{tr 41,0 ] will result in noise being added to the wrong variables, and will prob-
ably cause the filter to diverge. How I(#;+;.5x] and w(t,) effect the filter are
explained as follows. Recall that the diagonal elements of the state-noise covari-
ance matrix, Q(t,). are proportional to the residuals squared, equations (47) and
(49). From equation (19) it can be seen that the square of the state-noise vector,
w(t;), is proportional to the diagonal elements of Q(f,) if the noise is uncorre-
lated, which is assumed to be the case. Thus we see that the magnitude of the
noise vector is directly related to the magnitude of the residual vector when the
adaptive Q{f;) matrix routine is incorporated into the filter algorithm. That is,
if the filter is operating satisfactorly, which implies small residuals, the state-
noise vector will be small and vice versa. Consequently I'¢; .ty ] determines the
relationship between the state variables and the residuals. A large residual will
increase the gain on the state variable that I'[#;,.t;] specifies. The next section

describes how ¢ +;.t, ] is constructed for the chemostat state equations.
3.2.1 Transition Matrix For The Chemostat Equations

The construction of I{f;,,.tx] involves determining how a change in a state
variable effects the residual vector. In this way when a residual becomes large it
can be determined which state is diverging from its true value. It will be
assurned that the biomass differential equation, (28), is exact. Also since the
substrate concentration, equation (27). is unobservable, the residuals give no

indication of when it diverges. Thus for lack of information it will be assumed
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that no noise exist in this state equation, (27), either. These two assumptions
make the first two rows of ITf;,,,f;] all zeros. The residuals are directly related
to the measured variables via equation (25), so evaluation of these variables
.given by equations (35-39), will determine how the residuals are related to the
state variables. The following arguments explain how to determine the struc-

ture of Ity 4.6 ] For simplicity, let
wl(ty) = [ wy, we, wa, wy, ws) (52)

A large error between the predicted rate of biomass production, ub, and
the measured rate of biomass production, K™, can be produced by an error in
both/either u and/or b. Since it is assumed that no error exists in &, all error
must be associated with 4. Thus w, describes the noise in w, since it is directly
related to the residual in the rate of biomass production. Now the state variable
c, is coupled to u. so w, should account for noise in this variable as well {ie.
incorrect slope for u). Large residuals associate with ¥, ¥g,. and [0z]F* can
only be contributed to errors in the state variables 1, Yo, and [0z]g. respec-
tively. Thus w;, wg, and w, should be added to the state variables Y;, Yo,, and
[02]s respectively. A large residual associated with the rate of oxygen consump-
tion can be contributed to the state variables k e and [Oz]q. However, since the
noise in [Oz]4 has already been accounted for, ws is only added to state variable
k;a. From this information and the relationship given by equation (20),

Ttg +1.te] is given by
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where D, sp, and [07])q are used to get the correct units and magnitudes.
3.2.2 Adaptive Ramp Equations

The specific growth rate and the oxygen-mass-transfer coefficient state
variables are indirectly related to the measured variables. Consequently, it was
found that more robust state equations than those used for the yield
coefficients are necessary for good estimation of k;a and . The ramp equa-

tions
Z=c+w (54)
¢ =0+w (55)
proved more adaptive, where z is the state variable, ¢ is a pseudo state, and w

is the state noise explained above. The prime on w in equation (55) indicates

different units. Integration of these equations produce
z=(w +k)t +w +ks (56)

where k, and k; are integration constants. The slope of the ramp is determined
by the size of the residuals via the noise w. During operation, the filter adjusts
the slope of the ramp equation to minimize the error between the estimate and

the true state, thus making the equations adaptive.
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4. SINMULATIONS

To test the performance of the filter, three different computer simulations
were run. All three simulate a chemmostat where only bicmass is being produce
(i.e. no products). The simulations differ in that each uses a different set of
equations to describe the state of the chemostat. How the simulations are run

is explained below.
4.1 Program

Since no actual experiments were run, a computer program was written to
simulate the chemostat. Given a set of governing equations for the process, the
program generates the true state variables at frequency fz. From equations
(35-39) the measured variables are determined. To each measured variable,
noise with a guassian distribution and a zero mean is added. The magnitude of
the noise is such that each measurement has a standard deviation of Sdy 7% per-
cent of its mean, where Sdy? is determined by the user. See section 4.3 for the
value of Sdy” and other required inputs to the program. To minimize data file
size, the state variables are stored at frequency f, and measured variables are
averaged as explained before and then stored . Parameters, such as dilution
rate, D, are stored at frequency f, as well. The averaged measurements are fed
to the filter program where they are processed to produce an estimate of the
state by the algorithm described above. By comparing the estimate to the true
state, performance can be determined. Note that the simulation does not gen-
erate Oz consumption of CO; production data. Nor is the stoichiometric micro-
bial growth equation used. Stephanopoulos [13] and Cooney, Wang, and Wang
[17] have shown that the algorithm for generating the y vector works, so there is
no need to test it here. For more details on the chemostat simulator pregram

see Appendix I
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4.2 State Equations Used In The Simulations

In the sections below are descriptions of the state equations used in each
simulation as well as what aspect of the filter algorithm each simulation is

intended to test.
4.2.1 Simulation 1

The main purpose of this simulation is to see if the filter can follow a ramp
decrease in the oxygen-mass-transfer coefficient. Such a condition might be
induced in actual practice by changing the agitation speed. A Monod model,
based on dissolved oxygen concentration, determines the values of u and 1.

The simulation was generated by the following equations

b=blu-D) (57)
. b
§ = D(s, —s)—% (58)
_ 0.837[0g]q (59)
K 1.0)(10_3 + [02]d
0.7[0z2]4
= 80
3 B.687x107* + [Oz]d ( )
; b
[0x1g = ko ([02]4 — [02]d)_'};L (61)
2
550 00=<t < 6.0
kia ={550 —33.3(t —60) B0=<t <120 (62)
350 120<t <200
Yo, = 0.5 for all time ¢ (63)

where the parameters have the following values for all time, D =04 1/hr,

s; =10.0 g/1, and [0z]y = 7.5 mg/L.
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422 Simulation 2

This simulation is intended to test how the filter responds to large tran-
sients, in this case, step changes in dilution rate, D. The biomass, substrate, and
dissolved oxygen concentrations are governed by equations (57), (58), and (61)
respectively. Both kya and Yp, are held constant through out the simulation at
400 1/hr and 1.5 respectively. To simulate a Crabtree inhibition effect observed
in yeast, the substrate yield coefficient and specific growth rate follow curves
observed by Wang, Cooney, and Wang [22] and Kaspar Von Meyenburg [23]. No
algebraic equation is given for the substrate yield coefficient, so the data was fit

to a third order polynomial as shown below

_ D.B3s
K=0155+s (64)
8.33u 0.0 <u<0.08
Y. ={05 0.06<u<0.24 (65)

3.1 —18. 74 +39.5u% — 276 024<u<06
The dilution rate is stepped as follows

0.10 00=t < 5.0
D=4{022 50=<t <100 {(66)
040 100=<t <200

while s, = 28 g/1, and [0;] is the same as in simulation 1.
4.2.3 Simulation 3

This simulation is the same as simulation 2 except that k;a is a function of
biomass, and u is a function of [0;]4 as well as s as shown by these equations

0.53|0zjg =
u- [0c)a

- (0.5 +s)(2x1073 + [0z]4) (67)
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kzo =350 + 16.7(14 - b). (68)
The parameters and the remaining states are the same as in simulation 2. This
simulation is intended to see how the filter responds to increased nonlinearities.
4.3 Data Used For The Simulations

All simulations were run with the following data.

SAMPLING RATES:

1 point/min.
10 points/min.

J1
I )
To all simulated measurements 5 percent noise is added (i.e. Sdy% = 5). For the
measurement-noise covariance matrix, R{f,), all measurements were assumed

uncorrelated with 2 percent standard deviation as show by the following equa-

tions

R{t) = diag{of, 0f, of, of, 0%, | (89)
where

of = (SAR% yi(t:))? and  SdR% =0.02. (70)

For the smoothing routine, section 2.4.1, a first order polynomial with

m = 5is used. The smoothed measured vector is given by

yite) = 2hyity) + Doylte ) + 2oy(te o)

2 4
+ Eﬂtk—s) -yt ) — "2_1"Y(tk—5) (71)
The state-noise covariance matrix, Q(f). is smoothed over 5 points {i.e. N = 5).

The filter program requires an initial value for the state variables and the
state-error covariance matrix, P({; |f;). For all three simulations a 10 percent

error is incorporated in the initial guesses for the state variables and only the
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diagonal elements of P(f; | f;) are initialized.
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S§. RESULTS AND PISCUSSION

In Appendix ], the results of simulaticons 1, 2, and 3 are presented in Figures
4a-4g, Figures 5a-5g, and Figures 6a-6g, respectively. In each figure the solid
line is produced by the true state, generated by the simulation program, while
the dashed line is produced by the estimated state, generated by the Kalman
filter program. Also in Appendix I, Figures 7a-7e, are examples of what the
measured variable data, generated by the simulation program, looks like. The

specific results of each simulation are discussed below.
5.1 Simulation 1 Results

As can be seen in Figure 4f the estimate of the oxygen-mass-transfer
coeflicient follows the true state quite closely. All other state variables are also
estimated well, however, high frequency noise appears in the dissolved oxygen
concentration estimate. The noise is not due to the measurement noise of [0, ]J
as one might expect. Instead it was found that the noise in [0;])4 is produced by
fluctuations in the state variables that [Og]y is a function of, see equation (31).
These fluctuations do not effect the biomass or substrate concentrations
because the dynamics of these equations are much slower than the [0z]; equa-
tion. A quasi-steady-state approximation was used for the [O:]4 state filter equa-
tion in hopes of reducing the noise. Although this idea did reduce some of the
noise, it was not a great enough improvement to warrant the loss in generality.
The noise in the [0z]y estimate was only observed at low concentrations (< 2
mg /1), and is only considered a problem if the signal is used for control pur-

poses. Also the problem can probably be solved by a post filter, smoother.
5.2 Simulation 2 Results

This simulation also exhibits good kya estimation; however, it also intro-

duces two new problems. The first and most disturbing result can be seen in
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Figure 5b. The estimate of the substrate concentration fluctuates violently
around the true state. These oscillations are only observed at low concentra-
tions, but they can be explained qualitatively. Consider the steady state sub-

strate concentration equation

s =5; —-‘g% (72)

and remember that u, b, and ¥, are only estimates so they can fluctuate. At

high substrate concentrations s; is much greater than -D% as can be seen
|

from equation (72). Consequently fluctuations in -D% produce only small rela-
&

tive fluctuations in s. However, at low substrate concentrations -D% is almost
&5

equal to sy, so fluctuations in -g';— produce large relative fluctuations in s.
&

Since s is nonobservable, and so cannot be updated, these oscillations can cause
the state to diverge from its true value. The only real solution to this problem is
to make s observable. This idea might also explain some of the noise observed

in [0;]4 at low concentrations.

The second problem involves the estimation of the biomass concentration
and the specific growth rate. As can be seen from Figures Sa and 5c, the
biomass concentration over shoots its true value while the specific growth under
shoots its true value. To account for this behavior, recall that there is only one
measurement, ™, yet there two unknowns, u, and b. Consequently, the evalua-
tion of u and b is underdetermined and there are and infinite number of sclu-
tions that can meet these constraints. Yet this is not a problem since the neces-
sary information required to close the system is obtained from the state equa-
tions and through minimizing the cost function J, equation (8). However, the

quality of the solution depends on how accurate the state model is. Conse-
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quently the accuracy of u and b depends on the amount of noise in the meas-
ured variable and how well i is modeled. The only solution to this problem is to
model u more accurately. Even so, this is not much of a problem since it was
induced by a large transient and both estimates converge back to their true

states rapidly.
5.3 Simulation 3 Results

This simulation is very similar to simulation 2. The main differences are
the increased enter dependence of the state variables and the higher substrate
concentration. The increase complexity of the model does not effect the accu-
racy of the estimate. Also the improved estimate of the substrate concentra-
tion, Figure 6b, confirms the hypothesis about the poor estimation at low sub-
strate concentrations. However, this simulation still exhibits overshoots and
undershoots of b and u respectively. This is understandable since the filter uses
the same model for the specific growth rate equation.

6.4 Sensitivity

It has been observed that the sensitivity of the filter resides in the choice of
SdR% in the measurement-noise covariance matrix R{t,). See equations (69)
and (70). Qualitatively, the R(f;) matrix determines how heavily to weight the
measurements with respect to the estimated values. If SdR7 is chosen too small
then the mean of the estimates follow their true values closely; however, much
more measurement noise passes through the filter. If SdR% is chosen to large,
then the measurements are basically ignored, in which case the state is com-
pletely determined via integration of equations (26-34) only. This produces very
smooth estimates and works quite well if the model equations accurately
describe the system. However, if the model does not describe the state accu-

rately, as it does not in this case, then the estimates can wildly diverge from
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their true values. Consequently, there is a trade off between a noisy accurate
estimate and a smooth inaccurate estimate. As stated above, a value of 2% for
SdR7% produces a nice compromise between the two. This value of course
depends on the magnitude of the measurement noise and the accuracy of the

model, which will be different for each application.
5.5 Conclusions

Although not tested with experimental data, the simulations imply that the
filter algorithm works quite well for estimating k;a as well as the other state
variables. The algorithm handles transients very well and the state equations do
adapt to the prevailing conditions of the system. This information suggests that
kro can be estimated accurately on-line with the filter algorithm presented in

this paper.
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6. FUTURE RESEARCH

So far the filter algorithm has only been tested theoretically. Although it
appears to work, is must be confirmed experimentally. The experiment must be
set up such that all important state variables can be determined. Variables
such as biomass and substrate concentrations can be measured ofl-line quite
easily so they present no problems. The oxygen-mass-transfer coefficient is
another case though. Some technique must be developed to measure k;a so
that the performance of the filter can be evaluated. This problem will be investi-

gated next.

Currently the adaptive feature of the filter predominately resides in the cal-
culation of the Q{f;) matrix. It is believed that the performance of the filter can
be dramatically improved if the adaptive state equations, such as the ramp
equations, can be designed to adapt to the process faster and with better pred-
iction capabilities, With better prediction, the measurements need not be
weighted heavily, so the noise that passes through the filter will be greatly

reduced. This is important enough to warrant further research.

Observability of the substrate concentration is still a problem. One solu-
tion, however, is to incorporate off-line measurements into the filter algorithm.
Although off-line measurements have a sampling period of around one hour,
these updates might be enough to keep the substrate concentration from

diverging from its true value. However, this rmust be confirmed.

Finally, research must be done to incorporate the estimation algorithm

into a control scheme,
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7. NOMENCLATURE

In this manuscript all bold capital letters are matrices, all bold tower case

letters are vectors and the rest are simple variables or operators.

VARIABLE DEFINITION R
As defined in equation (22)

a Stiochiometric coefficient, equation(40)

b Biomass concentration g/l

c, Pseudo state variable 1/hr®

o Pseudo state variable 1/hr?

c Stiochiometric coefficient equation {40)

D Dilution rate i/hr

d Stiochiometric coefficient equation (40)

e Stiochiometric coefficient equation (40)

F(&(t).t) Jacobian matrix of f(&(t).t) MxM

F, As defined in equation (24)

Fo As defined in equation (24)

f(x(t).t) Nonlinear state vector function M

Fa Computer sampling frequency 1/hr

Je Measurement sampling frequency i/hr

G(t) As defined in equation (1) Mxl

g Stiochiometric coefficient equation (40)

H(te o X{teer ) Jacobian matrix of h(®(fy.,).te+1) Nx M
evaluated at ®(¢,,, %)

h{x(t:).t) Nonlinear measurement vector function N

1 Identity matrix

J Cost function

3 As defined in equation (24)

K(t) Kalman gain matrix MxN

ko Oxygen-mass-transfer coefficient i/hr

k, Integration constant

ks Integration constant

L Dimension of w(t)

M Dimension of state
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VARIABLE DEFINITION D RITS

(MW)pi Molecular weight of the biomass

(MW), Molecular weight of the substrate

m Size of smoothing window

N Dimension of measurement vector

n Number of points for §y smoothing

[0:1a Dissolved oXygen concentration g/1

[02]4 Equilibrium [0;]4 concentration g/l

P(t) State-error covariance matrix Mx M

Pt, | 1)) State-error covariance matrix at MxH
time £, assessed from measurements
taken at time &

Q(t) State-noise spectral density matrix LxL

Q(t) State-noise covariance matrix NxN

gu(te) Diagonal element of Q(t;)

Gu(te) As defined in equation (49)

grite) Smoothed element of Q(t,)

R(t:) Measurement-noise covariance maltrix Nx N

by | te) Residual vector N

s Substrate concentration g/l

sy Substrate feed concentration g/l

t Time (continuous) hr

t, Time (discrete) hr

v{) Measurement vector N

v (L) Element of v(f)

wi(t) State-noise vector, continuous L

wit,) State-noise vector, discrete N

wy Elermnent of w(f,)

x(t) True state vector M

x(t) Error in estimated state vector M

(L. 1t) State estimate at time £, assessed M
from measurements taken at time £

Y, Substrate yield coefficient

Yo, Oxygen yield coefficient

yite) Measurement vector N

Z As defined in equation (47) N

2 Element of Z
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DIMENSIONS
YARIABLE DEFINITION OR UNITS
Mg o1 de] Noise transition matrix MxN
Oty 1.6 ] State transition matrix Mx M
73 Specific growth rate 1/hr
of Diagonal element of R({,)
SUPERSCIPTS
m Measured variable
T Transpose of a matrix
-1 Inverse of a matrix
SPECIAL FUNCTIONS
) Derivative with respect to time
Il ih i-norm of a matrix
Fo3 B Expectation operator
Oy Kronecker delta

o(t —1)

Dirac delta function
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9. APPENDIX I

This appendix contains the results of all simulations. In each figure the
solid line represents the true state, generated by the simulation program, and
the dotted line represents the estimate, produced by the filter program. All
state estimates are started with a 10 percent error. In section 9.4 are the
figures of the measured variables typically generated by the simulation pro-

gram. These are the actual measured variables used for simulation 3.
9.1 Simulation 1 Figures

BIOMASS CONCENTRRTION VS TIME W/SMOOTHED INPUT
NOISE INPUT: IN Y YECTOR - S%, IN R MRTRIX - 2%

5
0 MATAIX RVERAGED OVER 5 PGINTS
_ ) ——1 SINULATED DATA. (-mme- } ESTIMATED DATA.
- | "
S U4 e
& L
=
T
o -
—_
=
] N
=
[ ]
[ ]
- K
i
T
5 3|
o]
2 lllllllll'llllIllllllllllllllllllllllllllllllllll
0 2 u 6 8 10 12 4 16 18
TIME (HR)

Figure 4a. Biomass concentration vs time for simulation 1. Note the rapid
convergence of the estimate.

20



=19 -

SUBSTRATE CONCENTRATION VS TIME W/SMOOTHED INPUT
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Substrate concentration vs time for simulation 1. Since s is unob-
servable it takes 6 hours before convergence occurs.
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SPECIFIC GROWTH RATE VS TIME W/SMOOTHED INPUT
NOISE INPUT: IN Y VECTOR - S%, IN R MATRIX - 2%
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Figure 4c. Specific growth rate vs time for simulation 1. Note that the ordi-
nate is greatly expanded :
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Figure 4d. Substrate yield coefficient vs time for simulation 1. Again the ordi-
nate is expanded, since ¥; only changes about 15 percent.
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Figure 4e. Dissolved oxygen concentration vs time for simulation 1. High fre-
quency noise passes through the filter in this case.
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Figure 4f. Oxygen-mass-transfer coefficient vs time for simulation 1. The

adaptive ramp equation works very well here.
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Figure 4g. Oxygen yield coefficient vs time.for simulation 1.
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9.2 Simulation 2 Figures
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Figure5a. Biomass concentration vs time for simulation 2. Note the
overshoot induced by the step in dilution rate at 6 hours.
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Figure 5b.  Substrate concentration vs time for simulation 2. The poor esti-
mate is due to the low substrate concentration and the nonobser-

vability problem.
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Figure bc. Specific growth rate vs time for simulation 2. Note undershoot
induced by the step in dilution rate.
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Figurebd.  Substrate yield coefficient vs time for simulation 2.
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Figure 5e.  Dissolved oxygen concentration vs time for simulation 2. This
simulation is run at a higher [Oz]s concentration. Note that less
noise passes through the filter.
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Figure 5i. Oxygen-mass-transfer coefficient vs time for simulation 2. Some

noise gets through the filter.
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Figure 5g.

Oxygen yield coefficient vs time for simulation 2.
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9.3 Simulation 3 Figures
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Figure Ba. Biomass concentration vs time for simulation 3. Overshoot is still
present.
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SUBSTRATE CONCENTRATIGN VS TIME W/SMOOTHED INPUT
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Figure 6b. Substrate concentration vs time for simulation 3. Since the sub-
strate concentration is higher, the noise is much less.
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Figure 6c. Specific growth rate vs time for simulation 3. Undershoot still
exists.
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Figure 86d.  Substrate yield coefficient vs time for simulation 3.
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Figure Ge. Dissolved oxygen concentration vs time for simulation 3.
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Figure 6f. Oxygen-mass-transfer coefficient vs time for simulation 3.

Eventhough the function is not a ramp, the estimate is still quite
good.
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Figure Bg. Oxygen yield coefficient vs time for simulation 3.
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9.4 Simulated Measured Variables

SIMULRTED RATE OF BIOMASS PRODUCTION WITH 5% NOISE

BEFORE AVERRGING OR SMOOTHING,

y
s
£ L
I -
<
1= 3 t-
=
D =
=
[
=
B o
&
- K
&
b N
(=]
o
W e M
[ ]
"LI._J = L o
£ : By
- -‘l' -' b ’
“ u'
P"‘ f‘?{.':;.-
1 IIIIIlllllllll]lllllIlllllljlllIll]llllilllllllll
0 2 y 6 8 10 12 4 16 18 20
TIME (HR)
Figure 7a. Rate of biomass production vs time. Actual input to filter for

simulation 3. The filter uses this measurement to update x and b.
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SIMULRTED SUBSTRATE TYIELD COEFFICIENT WITH 54
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SIMULATED OXYGEN YIELD COEFFICIENT WITH 5% NOISE
BEFORE AVERAGING OR SMOBTHING.
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2 i 6 8 10 18

TIME (HR)

12 14 16

Oxygen vield coefficient vs time. Actual input to filter for simula-
tion 3. The filter uses this measurement to update Yo, The ordi-

nate is the same as in Figure 6g for comparison.
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SIMULATED DISSOLVED OXYGEN CONCENTRATION WITH SZ NOISE
BEFORE AVERACING OR SMOOTHING.
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10. APPENDIX I

In this appendix are the FORTRAN listings of all programs used to generate

the data presented in Appendix I.

The first listing is the program that is used to simulate the chemostat. This
program generates the true state variables from state equations provided by the
user. From these state variables the measured variables are produced which the
Kalman filter program uses as input. The measurement equations must also be

provided by the user.

The Kalman filter program reads the measured variables and produces the

estimated state variables. The user must provide the state equations.

The third listing calculates the exponential of a matrix and is called by the

filter program to calculate the state transition matrix.

All three programs were run on a VAX-11/780 main frame computer made
by Digital Equipment Corporation. The progratns are written in VAX-11 FORTRAN

version 3.0. Also the following subroutines from The IMSL Library are called

DGEAR: Differential equation solver for stiff systemns
GGNQF: Normal random diviate generator

LINVZF: Inversion of a matrix, high accuracy solution
VMULFF: Matrix multiplier C=AB

VMULFM: Matrix multiplier C=ATB

VMULFP: Matrix muitiplier C= AB”
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10.1 Simulation Program

This program simulates a chemostat producing state variables

and output w/noise {(measured} varfables

This program is capable of generating 29 state variable and 29 measured
variables for a chemostat.

This program 1s set up for batch operation.
The following informatfon must be stored in file FORZZ6
in the order shown:

TSTOP The stopping time of the program (hrs)

DELT Delta time between stored data (hrs)

NOSAMP The no. of samples taken between stored data
which are averaged to produce one point every
DELT hours

ERROR(1-NY) Relative error for each Y vector

Also the flles X1TOIZ and PARAMETER must be initialized with the
tnitfal values of X and PARAM

The state equations that specify the system are stored by the user {n
the subprogram TRUE. See this subroutine for further comments.

The true states generated in this program are stored iIn files TX1TO1&.DAT
and TX11TO28.DAT. The output with noise is stored In files YITOI1¥.DAT

and Y11TO2#&.DAT, -

To each measured variable white noise with a gausstan distribution and

a zero mean 1s added. The magnitude of the nofse 1s such that the
standard deviation of the variable is ERROR{1}X of its mean.

The variable DELT corresponds to the sample frequency of the filter f sub 1
while the expression DELT/NQOSAMP corresponds to the sample frequency of the
measur ing device, f sub 2.

The important variables are as follows:
N

t== State dimension

NY t== Measurement dimension

Yii} te= Measurement vector

AVEY (1} == Y vector averaged over NOSAMP pofints

PARAM{ 1} 1m= Vector which contains the parameters
used by the state equations

NP L No. of parameters

AVEPAR{ 1} == PARAM vector averaged over NOSAMP
points

i1} 1= Vector for those state which require
tntegratfon.

STATE{( 1) 1®= State vector including X{1}) states.

NDIF i== No. of state variables the require

integration,

lsXsXzlzsizisizsinsisinizininislisizsizizizizisieizsinizizizisisizlieisizisisisieinlatslislieinlalsXelalal el

IMPLICIT REAL*B {A-H,0-Z)

EXTERNAL DIFEQN,JACOB

DIMENSION X(28),STATE(2&),Y{20),C{(BO&),IWK{208),PARAM{ 1)}
DIMENSION PD{(2P,28) ,AVEPAR( 2P} ,AVEY{28)

CHARACTER*3 YESNO

COMMON PARAM,STATE

MS=28

STEP 1. Initialize system.

READ (5,*) TSTOP

READ (5,*) DELY

READ (5,*) NOSAMP

CALL TRUE (X,MS,NX,NY,NDIF,NP)

o000

(gXg]

Output information to FORGEE for conformation
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WRITE{(6,1) TSTOP,DELT, NOSAMP

STEP=R.0808088] numer jcal integrator DGEAR.
INDEX=1
MITER=2 !

SAMPLE=DELT/NOSAMP
OPEN(UNIT=1,FILE="TX1TO1&* ,STATUS="0LD")
OPEN{UNIT=9 ,FILE="Y1TO18°", STATUS=*NEW")
OPEN{UNIT=3, FILE-'PARAMETER‘ STATUS="0LD"')
IF {NX .GT. 18) THEN

0PEN(UNIT-4 FILE=*TX11T02#' ,STATUS='QLD")
END IF
IF {NY .GT. 18) THEN

OPEN{UNIT=7 ,FILE='Y11T028' ,STATUS="NEW")
END IF
DO 2 I=1,NP

AVEPAR(]1)=PARAMI{I)

2 CONTINUE

1 FORMAT(' STDPPING TIHE « ' . FB8.5,/,' DELTA TIME = °*,F7.5,
& /,° NO. OF SAMPLES = *,13}
C

TINT=E .8 !

METH=2 !

TOL=2.00881 { A1l {nformation required by the
!
H

C
C STEP 2. Store state and parameters.
c

-] If {NX .LE. 18) THEN
WRITE(L,1®) TINT,(STATE(I),I=1,NX)
ELSE
WRITE(1,18) TINT,{STATE(I),I=1,18)
WRITE(4,18) TINT, {STATE(I),I= 1 NX?
END IF
WRITE(3,28) (AVEPAR(1),I=],NP)
10 FORMAT(1X,F8.5,18(1X,E11.4))
28 FORMAT{1X%,10(E11.4,1X))}

(&
C STEP 3. Check stopping time.

c
If (TINT .GE. TSTOP} GOTO 48
ISAMPLE=#
DO 22 I=],NP
AVEPAR(I)=g. @
22 CORTINUE
DO 23 I=1,NY
AVEY{1)=0.8

c23 CONTINUE
g STEP 4. Scolve differential egns.
24 TEND=TINT + SAMPLE

IF (NDIF .EQ. &) GOTO 35
CALL DGEAR (NDIF,DIFEQN,JACOB,TINT,STEP,X,TEND,TOL,METH,MITER,
* INDEX,IWK,C,IER)
1F (IER .GT. 128) THEN
WRITE(6,25) IER,STEP,TOL,INDEX,TINT

25 FORHAT(' FA]LURE IN DGEAR AT STEP 4, 1ER=',13,/,' STEP="
= .F8.6,7," TOL=',FB.6,/," INDEX=',12,/,' TIME=',F8.6)
STOP
END IF

IF (IER .GT. @) THEN
WRITE(B,32) IER,STEP,TINT -

32 FORHAT(‘ **UARNING IN DGEAR AT STEP 4.%% 1ER=",13,
L /,' STEP=*,FB.6,/,' TIME=",fB.6)
END IF
35 CONTINUE
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STEP 5. Input data into state vector snd parameters.
CALL ALGEQON (TEND,X)
STEP 6. Calculate output vector w/noise.
CALL OUTPUT (Y}
STEP 7. Calculate the average values of the ¥ vector and PARAM
and check to see if enough samples have been taken
Do 37 I=1,NY
AVEY(1}=AVEY{I)+Y(]I)}/NOSAMP
CONTINUE
DO 38 1=]1,NP
AVEPAR( 1 }=AVEPAR{I)+PARAM(]1)/NOSAMP
CONTINUE
ISAMPLE=1SAMPLE+1
IF (1SAMPLE .EQ. NOSAMP) GOTO 3%
GOTO 24

C
C STEP 8. Store outpur data vector.
c

39

IF (NY .LE. 18} THEN
WRITE(9,12) TEND,{AVEY{I),1=1,NY)
ELSE i
WRITE{9,18) TEND,{AVEY{I),I=1,18)
WRITE(7,18) TEND,{AVEY(I),I=11,NY)
END IF
GOTO 5

C
C EXIT PROGRAM.

C

OaOOOOOOO0O00O0OG000000

40
50

WRITE{6,58) TINT

FORMAT(® STOPPED AT TIME =',F8.5)
CLOSE(UNIT=1}

CLOSE(UNIT=9)

CLOSE{(UN]T=3}

IF (NX .GT. 19) CLOSE{UNIT=4)

IF {NY .GT. 1#) CLOSE(UNIT=7)
STOP

END

This subroutine is used to generate the necessary eqns for the
simulation program.

A discription of each entry section is described as follows

ENTRY

ENTRY

ENTRY

ENTRY

TRUE s
This routine is used to initialize the main program variables
such as NX, NY, NP, STATE(1), and PARAM(i).

DIFEQN:

In this routine al]l state equation that need to be integrated are
stored here. XDOT is the derivative of X.

Note 1f NDIF 1s zero then this subroutine is by passed

JACOB:
This 1s a dummy routine used by DGEAR.

ALGEQN:
This routine has all algebraic equation used to describe the state.
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1f NDIF equals zero then the state of the system is completely
generated by a set of "algebraic® equations

ENTRY OUTPUT:
In this subroutine all of the measurement equation are stored.
These equations are used to generate the measurement vector
from the true state varibles. Also in this routine, the noise
is added to corrupt the measurements.

oOoOOOnOO0O0O0

WARAEEN AR NN TR N PROGRAM STATS HERE 12322 E 24 2222 2 22 R 22 2]}l

SUBROUTINE TRUE {(X,MS,NX,NY,NDIF,NP)

IMPLICIT REAL*B (A-H,0-2)

REAL*8 KLA,KS,KO

DIMENSION X{1),STATE(2%),PARAM{L1E) ,XDOT(1},Y(1},PDI(MS,MS)
DIMENSION ERROR(28)

COMMON PARAM,STATE

IFLAG=Z.#&

NX=9

NY=5

NDIF=3

NP=3
DSEED=123579.9

C

C Read relative error for Y vector from FORGE
READ(S5,*) (ERROR{I),I=],NY) .

C Output data to file FORPPE for conformation
WRITE{(6,%) 'THE FOLLOWING ERRORS ARE ASSUMED FOR THE Y VECTOR:®
DO 2 I=1,NY
WRITE{(&,1) I,ERROR{I}
1 FORMAT(' ERROR{',I2,*) = *,E9.2)
2 CONTINUE

N E='TX1TO1¢"' ,STATUS="0LD"*}

N E=*PARAMETER® ,STATUS='0LD"}
L (1),1=1,NX)

* {1),I=1,NP)

N

N

{

{

{

E

Cl1=STAT
YS=STATE
02D0«STAT
KLA=STAT
C2=STATE
Y02=STATE

D=PARAM{ 1}
SF=PARAM{2}
D2MAX=PARAM{3}

X{1)=B
X(2)=§
X(31=02D

I
1
)
)
I
1
1
2
3
(
(
E
E
{

T I S B

)
)
6)
n
}
9}

M=NX
N=NY
RETURN

This part is used to solve any differential eqns in the simulation.

aoon
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ENTRY DIFEQN {NDIF,T,X,XDOT)
IFLAG=1
GOTO 7

5 CONTINUE

C Three dif eqns: one for B, one for $, and one for [02].

XDOT(1)aX{(1)*{STATE(3}-PARAM(1))
XDOT(2)=PARAM{1)*(PARAM{2)-X{2))-STATE(3}*X(1}/STATE!
XDOT(3)=STATE{7)*{PARAMI3)-X(3))-STATE(3}*X{1)/STATE!
IFLAG=@

RETURN

5)
9)

c
C This %s a dummy subroutine used by DGEAR.
C

ENTRY JACOB {(MS,T,X,PD)
RETURN
C
C This part is used to solve any algabraic eqns in the simulation.

ENTRY ALGEQN (T,X)
7 CONTINUE
C
C Set parameters to desired value

PARAM{1)}=#.1
IF (T .GE. 5.8 .AND. T .LT. 1&.2) PARAM(]}=g8,22

IF (T .GE. 19.9) PARAM(1)=28.4

Set state variables
UMAY=0.53
KS=#.5
KO=2 .0E-3

SET BIOMASS CONC.
STATE(1)=sX{(1)

SET SUBSTRATE CONC.
STATE{2)=X{2)

SET SPECIFIC GROWTH RATE
STATE(3)=UMAX=X{2)1*X {3}/ ((KS+X{2))*{KO+X{3)))

SET SUBSTRATE YIELD COEF.
U=STATE(3)
IF (U .LE. #.86) STATE(5)=8.333333*)
IF (U .GT. #.24) THEN
. ngATElS)-S.5954-18.7323*U+39.5559*U**2-27.588*U*‘3
L

STATE{(5})=0.5

END IF

SET DISSOLVED OXYGEN CONC.
STATE(6)=X{3)

SET OXYGEN MASS TRANSFER COEF.
STATE(7)=350.0+150.8*{{13.936-X{1)}/9}

SET OXYGEN YIELD COEF.
STATE(S:i=]1.5

IF ENTERRED FROM DGEAR THEN RETURN
If (IFLAG .EQ. 1) GOTO 5
RETURN

o0

O o 0o O

a0 0O 0O 0

This part set output eqns and adds noise to the output.

ENTRY QUTPUT (Y}
Y{1)=STATE{1)*STATEL3)
Y(2)=STATE(E)

Y{3)=STATE(9}

Y(4)=STATE(6}
Y{5)=STATE(7)*{PARAM{3)-STATE(6))

o000
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c

g Now add white noise to the output
bo 1 I=1,N
SDEV=ERROR{I)I*Y(1)
Yil)sY{I) + GGNQF {DSEED) * SDEV
18 CONTINUVE

RETURN
END
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102 Kalmar Filter Program

OOONOCOOOOOOOOOCOO0O000000000O0O000ODODO0O0ON00ONON0O0O0ON00D

ooOnn

Adaptive-Extended Kalman Filter Program
For a batch process

This program can except up to 28 state differenttal eqns, 2% measured
eqns and 185 parameters in those differential eqns.

The state and measured eqns along with their associated matrices are
place in subroutine SYSTEM, see that subroutine for details.

The following defines program var{ablies:

M tam Actual dimension of the state vector
N i=m Actual dimension of the measured vector
Xti) te== State after updated from measurement.
XPRED{ i} (== State predicted by state D.E eqns.
P{i,J) 1= State error covariance matrix after wpdating
PPRED{1,J) t= State error covariance matrix predicted
by difference eqn.
Yit1} tm= Measured vector.
YMAT(1,3) jmm Matrix used in smoothing of Y vector
YHAT(1) t== Measured vector predicted via XPRED(1)
YMAX == If the residuals exceed YMAX*YHAT(1} then the

residual are set to YMAX"YHAT(t) in the
determination of QUV1,J}) matrix

FLi, 3 t=o Jacobian of nonlinear state eqn evaluated at
X01)

HUT, 1) == Jacoblan of nonlinear measured eqn evaluated
at XPRED{1)

PHIt§,3) HE R State transition matrix

G{i1,5) == Noise transition matrix

Q{i1,]3) == State noise covariance matrix

QMATI {1, §? = Matrix used to average O matrix

R(1,)) 1= Measured noise covarance matrix

ERROR( 1) 1= Assumed relative error in Y vector. When
when multiplied by Y vector gives standard
deviation fn Y vector. Used for determining
value of R matrix.

RES{ 1) LR Residuals between measurement and predicted
measurement

K(i,J) 1== Kalman gain matrix

PARAM( 1) 1= Vector which contains parameters used in
state eqns

CONV{1} tme Vector which contains convolutes used in

smoothing the Y vector

The following infermation must be entered in the file assigned to FOROAS
in the following order and on each line:

Rel error in Y vector: Y{1)-Y{N}
Maximum rel error §n Y vector: YMAX
Number of points to averavge Q over: NQPT

Alsc the files IX1TOJ.DAT AND IPiTOJ.DAT must be renamed to XiTOJ.DAT
and P1TOJ.DAT

IMPLICIT REAL*8 (A-H,0-Z)

EXTERNAL STEQNS,JACOB

REAL®B K{2@,28)

DIMENSION X(28) ,XPRED{28&),P(2¥,29),PPRED(29,28) ,H(28,28)
DIMENSION F{28,28),Y(28},YHAT(20) ,TEMP1{20,28),C(B22) ,RES(29}
DIMENSION 0!{2¢,28),PARAM(12) ,FPFT{20,20),R(28,20),QMAT(28,28)
DIMENSION PHI(2F,28),G{2/F,20),IWK{28) ,YMAT(28,20),CONV(20)
COMMON PARAM

STEP 1.
Read state and measured variable dimensions and intlalize system
by calling SYSTEM subroutine
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MS=2§¢

TINT=0.8

ICOUNT=Z

IOCNT=84

CALL SYSTEM (MS,M,N,NPARAM,X,P)

Open files to be used for storage and {nput data.

OPEN (UNIT=1@,FILE='PARAMETER',STATUS="0LD")
OPEN (UNIT=7,FILE='YI1TOL#*,STATUS="0OLD")
OPEN (UNIT=1,FILE="X1TOl#* ,STATUS="0LD*)
OPEN (UNIT=9,FILE="P1TO1#"',STATUS="0OLD")
OPEN (UNIT=]],FILE=*CONV’,STATUS="0QLD")
OPEN (UNIT=13,FILE="IP1T018"' ,STATUS="NEW")
OPEN (UNIT=15,FILE="IX1TO1#"',STATUS="NEW")
1IF (M .GT. 18) THEN
OPEN (UNIT=3,FILE=*X11T022" ,STATUS='0LD")
OPEN (UNIT=4,FILE='P11T02#",STATUS="0LD")
OPEN (UNIT=14,FILE="IP11T02#"',STATUS="NEW")
OPEN (UNIT=16,FILE="IX11TO28"',STATUS="NEW")
END IF
1IF (N .GT. 18) THEN
OPEN (UNIT=8,FILE="Y11T028",STATUS='0OLD"}
END IF

o0o

Input maximum relative error for Y vector.
READ (5,") YMAX

Input number of points to average Q over.
READ {(5,%*) NQPT

Convelute points are stored in file CONV.DAT with the first data NPT
the second DNORM and the remainder CONV{NPT}

READ{11,*) NPT,DNORM, (CONV(I),I=1,NPT}
Output 1nputted data to FORPPE for conformation.

OO0 aO0n O 00

WRITE(6,1} YMAX,NQPT
1 FORMAT(' YMAX = ' ,F7.2,/,' Q MATRIX AVE. OVER:',I13,* PTS")
WRITE(E,2) NPT,DNORM
2 FORMAT(® NO. OF CONVOLUTE PIONTS = °*,12
+ ,/," NORM = ', F9.9}
DO & I=1,NPT
WRITE(6,3) 1,-1+1,CONV{I)
3 FORMAT{(* C{"',12,') * ¥{',13,') = ', ,FB.08}
C‘ CONTINUE
g Create starting files for next run at same initia) conditions

IF (M .LE. 1&) THEN
WRITE ' Iy, I=1,M)
. P{I,I1),I=1,M)
1 }
I }

o

~

[=]

v

m
o~~~
C Tt e e

CC v
ZZrom ZZWor

1
CLOSE(UNI
CLOSE(UNI
CLOSE(UNIT
END IF
7 FORMAT(1X,18(1X,E1}.4})

7
7
T
T
7)
7)
7)
7}
T=
T=
T=



-73-

c

C STEP 2.

C Store data.
c

5 IF (M .L
WRITE

WRITE
E

E. 19) THEN

{1,18) TINT, !

(9,19) TINT,{

ELSE
WRITE(1,1@) TINT,{
WRITE(3,18) TINT,({
WRITE{S,1@) TINT, {
WRITE(4,108) TINT,(

END IF
18 FORMAT (1X,F7.4,18(1X,E11.4))

c

C STEP 3.

€ Read measured {output) vector, parameters and time.

C
IF {N .LE. 18) THEN
READ(7,*,END=168) TEND,(Y(1),I=]1,N)
ELSE
READ{7,*,END=1EQ) TEND,{(Y(1),I=1,18)
READ(B,*) TEND,{Y(1),I=}1,N}
END IF
Cc
C Now smooth data. .
C Use polynomial least squares fit of NPT points {(see text)
(o

ICOUNT=ICOUNT+1
IFLAG=8
IF(ICOUNT .LT. NPT} IFLAG=!}
PO 12 I=1,NPT
bo 12 Jd=1,N
YMATI{NPT+2-1,J)aYMATINPT+1-1,4J)
12 CONTINUE
DO 15 I=},N
YMAT(]1,1)=¥Y{1)
15 CONTINUE
1IF{IFLAG .EQ. 1) GOTO 17
Do 17 I=1,N
Yil)=@2.@
DO 17 J=1,NPT
Y{I)=Y{I)+{CONV{J)=YMAT{J,I)}/DNORM)}
17 CONTINUE
Read parameters for uses by state eqns
READ(1@,*) (PARAM{I),I=]1,NPARAM)

STEP 4.
Calculate X{t+llt) using DGEAR from IMSL 1tbrary.
DGEAR subroutine can handle stiff eqns

onOOny O

METH=2
TOL=0.008281
INDEX=1]
STEP=@.@80801
MITER=1
DO 20 I=1,M
XPRED{I)=X{I}
29 CONTINUE
T=TINT
CALL DGEAR (M,STEQNS,JACOB,T,STEP,XPRED,TEND,TOL ,METH,MITER,
* INDEX,IWK,C,IER)}
IF {IER .GT. 128) THEN
WRITE(6,25}) IER,STEP,TOL,INDEX,T
25 FORMAT(' FAILURE 1IN DGEAR AT STEP 4. lER=",13,/,° STEP="
* ,F8.6,/,' TOL=",F8.6,/," INDEX=",12,/,* TIME=",FB.6}
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STOP

END IF

IF
34

{1ER .GT. @) THEN

WRITE(6,3%) 1ER,STEP,T

FORMAT{® =**WARNING IN DGEAR AT STEP 4.%* IER=",13,
/,' STEP=",F8.6,/,* TIME="',F8.5)

END IF

STEP 5.

OonNnoon

Obtain values for H,G,R,F,YHAT.

CALL SYSMAT (MS,X,XPRED,Y,H,G,R,YHAT,TINT,TEND}
CALL JACOB (MS,TINT,X,F)

c
€ STEP 6.
C Calculate resfiduatls
c
DO 49 1=1,N
RES{I)=Y{])-YHAT(I)
ClB CONTINUE
C STEP 7.
C Calculate state transition matrix PHI
c
po 54 I=1,M
DO 5& J=] .M )
FOL,I0)=F(I,J)*(TEND-TINT}
59 CONTINUE
B=2.#
MACHDIG=S5
CALL SUBEXP {(F,MS,M,PHI,B,MACHDIG,SIGDIG)
IF {SIGDIG .LE. 5.8) THEN
WRITE(6,6@) SIGDIG,TEND
64 FORMAT(® **WARNING IN STEP 7.%* NO. OF SIG DIG IN PHI="
b JF2.8,/,* AT TIME="',F7.4)
END IF
C
C STEP B.
C Calculate state-noise covariance matrix by Adaptive Filter.
C Note the matrices TEMP1,K and PHI are used as work space in this step.
C

CALL VMULFF (PHI,P,M,M,M,MS,MS,TEMP] ,MS,IR)
CALL VMULFP ITEMPI.PHI.M.M M MS M5, FPFT MS,IR)
CALL VMULFF (H,FPFT,N,M, H MS ,MS, TEMPI MS IR)
CALL VMULFP (TEMP],H,N,M,N HS HS PHI, MS IR)

Do

78 I=1,N
Y{I1)=RES(I)
IF{DABS(RES({I)) .
YOI aYMAX*YHAT(I)
TEMPI(],l)esY(])*~

GT. DABS{YMAX*YHAT(I))}
2 - R(I,1) - PHI(I,I]}

78 CONTINUE
CALL VMULFF (H,G,N,M,N,MS5,MS,PHI.MS,IR)
IDGT=0
CALL LINV2F (PHI,N,MS,K,IDGT,.C,IER}

IF

(JIER .GT. @) THEN
WRITE(6,B8) IER

Ba 13FORMAT(IX.']NVERSE FAILURE IN ADAPTIVE FILTER STEP 8. IER='
" N }
STOP
END IF
CALL VMULFF (K,TEMP1,N,N,N,MS,M5,PHI M5, IR)
c CALL VMULFP (PHI,K,N,N,N,MS,MS,TEMP1,M5,IR)
C STEP 9.

C Set Q and make sure it's postive and average QO over NOQPT points.

c
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IQCNT=I1QCNT+1
IFLAG2=0
1F (IQCNT .LT. NGPT) IFLAGZ=1
PO 81 I=1,NQPT
DO B! J=1,N
QMAT{NQPT+2-1,J)=0MAT{NQPT+1-1,3)
CONTINUE
0O B2 I=1,N
QMAT{1,1)=TEMPI(I, .1}
CONT INUE
NAVE=NQPT
IF {IFLAG2 .EQ. 1} NAVE=IQCNT
bo 83 I=1,N
TEMPLI(I,1)=0. ¥
po 83 J=1,NAVE
TEMPL{I,I)=TEMPI(],I}+QMAT(J,1}/NQPT
CONTINUE
DO B85 I=1,N
po 85 J=]1,N
Q1. Q=00
CONTINUE
po 9¢ I=1,N
Q(I,1)=TEMP1{I,1)
1F (Q(I,1) .LT. 9.8 Q{l,])=8. 9
CONTINUE

ol
C STEP 14.
C Compute state-error covariance matrix.

c

ONOOn

OoONOOn

11
s

12

13

13

s

CALL VMULFF (G,Q,M,N,N,MS,MS,TEMP1,MS,IR}
CALL VMULFP {TEMP1,G,M,N,M,MS5,MS,Q,M5,IR)}
DO 112 I=1,M
DO 118 J=1,M
PPRED(1,J)=FPFT{I,J3+Q(1,0)
g CONTINUE

TEP 11.
Calculate Kalman Gain.
Matrices TEMP1,FPFT, and PHI are work space in this step.

CALL VMULFF {H,PPRED,N,M,M,M5 MS, TEMP1,MS,IR)}
CALL VMULFP {TEMP1,H,N,M,N,M5,MS,PHI,MS,IR)
DO 128 [=1,N
DO 12#& J=1,N
TEMP1(I,J)=PHI{I,Jd}) + R{1,J)
) CONTINUE
IDGT=14
CALL LINV2F (TEMP},N,MS,PHI,IDGT,.C,IER)
IF (IER .GT. 34) THEN
WRITE (6,13%) IER
) ;?ggAT t1X, ' INVERSE FAILURE IN KALMAN GAIN STEP 11. IER=',I3)
END IF
1IF (IER .GT. &) THEN
WRITE(6,135) IER,TINT,1DGT
5 FORMAT(' *» INVERSE WARNING IN KALMAN GAIN STEP 11. =***,/,
* * 1ER= *,12,/,' TIME = ',F8.4,/," IDGT = *,12)
END IF
CALL VMULFM (H,PHI,N,M,N ,MS,MS,TEMP1 MS,IR)
CALL VMULFF (PPRED,TEMP1,M,M,N ,MS ,MS,K,MS,IR)

TEP 12.
Update state vector.
Y is used as work space.

CALL VECMAT (K,MS,M,N,RES,Y}
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DO 148 I=1,M
XL Y=XPREDU1)+Y{I}
149 CONTINUE

c

C STEP 13.

C Update error covariance matrix
C PHI 1s used as work space.

C

C
c
c

c
c

[22sisizizizisizizinlaly!

CALL VMULFF (K,H,M,N,M,MS,MS,PHI ,MS,IR)
CALL VMULFF (PHI,PPRED,M,M,M,MS ,MS,TEMP1,MS,IR}
DO 159 I=]1,M
DO 158 J=]1,M
P(1,J)=PPRED(I,J)}-TEMPI(I,J)
150 CONTINUE
TINT=TEND
GOTO &

Now exiting program.

168 WRITE (6,178) TEND
172 FORMAT (1X,'END OF FILE HIT AT TIME =',F7.3,'hrs.")
CLOSE (UNIT=1)
CLOSE (UNIT=9)
CLOSE (UNIT=27)
CLOSE (UNIT=18)
CLOSE (URIT=11)
IF (M .GT. 18) THEN
CLOSE (UNIT=3)
CLOSE (UNIT=2}
END IF
IF (M .GT. 18) CLOSE{UNIT=8)
STOP
END

SUBROUTINE VECMAT (A,IA,M,N,X,Y)

This routine compute Ax and places the result in vector y. A is a

M by N matrix,
REAL*8 A(IA,1),X(1},¥(1}
po 2& I=1,M

Y{l)=p.8
DO 1@ J=1,N
Y{I)aY{I)+A(I,0)*X{J}

19 CONTINUE

28 CONTINUE
RETURN
END

This subroutine {s used to specialize the program to hand a specified

set of state and measured eqns. Changes need only be made to this subroutine

to handle a different set of state and measured eqns. No changes need be

made to the main program.

This subroutine has several entry point which are explained below.

SYSTEM ENTRY:

This section is used to inialize the main program. The dimensions of the

state and measured vectors are set here along with the no. of parameters

used Iin the state eqns.

STEQNS ENTRY:
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This sectton contains the state differentfal eqns that are specific to
a partécular user

JACOB

ENTRY:

This section contafins the jacobfan of the state eqns. It is used by the
filter routine as well as DGEAR.

SYSMAT ENTRY:
This section set all the matrices that are required by the mafin program

SUBROUTINE SYSTEM {MS,M,N,NPARAM,X,P)
IMPLICIT REAL®8 (A-H,0-2)

REAL*B KLA

DIMENSION X{1),XPRED{1),PIMS,
DIMENSION FIMS,MS),Y{1),YHATI
COMMON PARAM

MS},H(MS ,MS),G{MS ,MS),R{MS5,MS)
1},XDOT(1}),PARAM{18) ,ERROR{28)

System intializes X and P and sets the state space dimension to M
and the output space to N.

Read

M=g
N=5&

from FOREPS relative errors assumed for Y vector.
READ{(5,*} {(ERROR(1},I1=1,N)
DO 5 1=1,M -

DO 5 J=1,M

P(I.0)=@. &

CONTINUE
NPARAM=3
NX=M

FILEs*X1TO18° ,STATUS="0LD")
FILE="PLTO19"' ,STATUS="0DLD"'}
13,1
1.1}

CLOSE

C Qutput relative errors in ¥ vector to FORGFE for conformation.

C

DO 7 I=1,NY

WRIiITE{(6,6} 1,ERROR(I}

FORMAT(® REL IN ¥Y(',I2,") = *,F6.3)
CONTINUE
RETURN

C This part of the program is used by DGEAR,
(™

c

ENTRY STEQNS {M,TIME,X,XDOT}
D=PARAM{ 1)

SF=PARAM(2)

02MAX=PARAM{ 3)

KLA=X{
C2=X(8} "
Y02=X(9)

€ These are the governing differintial eqns for this system,
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XDOT{1)=B*{U-D)
XDOT{2)=D"{SF-S}-U"B/YS
XDOT(3)=C1

XDOT{4)=B. . &

XDOT(S)=0.%
XDOT(6)=KLA*IO2MAX-02D}-U*B/Y02
XDOT{7)=C2

XDOT(8)mg. @

XDOT{(9})=@.@

RETURN
This routine calculates the Jacobian for DGEAR and SYSMAT.

ENTRY JACOB (MS,T,X.F}
DO 18 I=]1,NX
DO 1# J=1,NX
FII,d)=@. @
19 CONTINUE
D=PARAM{ 1}
SF=PARAM{2)
OZMAX=PARAM{ 3}

o000 O

c
C Set F matrix. F is the Jacobian of the state eqns xdot=f{x,t).

)
/X(B)w™2

-X{6)
X(3r/7X(9)w*2
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This part of the program sets the state and output eqns matrices and vectors

ENTRY SYSMAT {MS,X,XPRED,Y,H,G,R,YHAT,TINT,TEND)
PO 15 I=1,NX
DO 15 J=1,NX
R{1,J)=0.8
G{I,J)=0.8
H{I,J}=0.@ .
15 CONTINUE

QOO0 O

c
C Set H matrix
C
H{1,1)=XPRED{3)
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RED(7)
AX-XPRED{6)

Xommmm™

Set G matrix.

Next is the nonlinear output (measurement) eqns.
YHAT!{ 1 )sXPRED( 1 }*XPRED(3)
YHAT(2)=XPRED!
YHAT!3)=XPRED(
YHAT{4)=XPREDI

1}
5}
9)
6)
YHAT{(S)=XPRED(7?7)

*{02MAX-XPRED{E))
Set output noise covarfiance matrix R
DO 29 I=],NY
R{I,]1)s{ERROR{I}*YHAT(]1))"*2
29 CONTINUE

RETURN
END
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10.3 Matrix Exponential Program

C SUBEXP computes the exponential of matrix A and places the result iIn
C matrix EXPA. B denotes the radix base of the cemputer (2 for vax} and
C MACHDIG denotes the number of digits {base B} used to reprsent the
€ mantissa of a floating point number in the computer (MACHDIG=55 for
C REAL"B representation on the vax). SIGDIG gives the number of
C significant digits in the norm of explal. Note matrices A and EXPA
¢ must occupl different locations in memory.
C This program also call the subroutine BALANCE to balance A with respect
C to the l-norm, and subroutine ANORM to compute the l-norm of A.
c
C Definitions of important variables:
(&
c 1A i1mm Row dimensfon of matrix A as it appears in the
o dimension statement of the calling program.
c N = Used dimenslions of matrix A
C ima Order of Pade approximation used.
C AVLAM {m= Average of elgenvalues of matrix A
C See R. Ward, SIAM J. NUMER. ANAL. Vol. 14, NO. 4, Sept 1977.
C
SUBROUTINE SUBEXP {(A,IA,N,EXPA,B,MACHDIG,SIGDIG)
IMPLICIT REAL*8 {A-H,0-Z)
DIMENSION A(IA,1),EXPAUIA,L1),D(22) ,EXPAK(ZE,20),QPAL2Y,20) ,AK(2P,28)
DIMENSION QPNA(29,20),WK{588)
c
C TO MAKE THIS SUBROUTINE HANDLE MATRICES LARGER THAN 28 BY 2/
C CHANGE TAK=# AND ALL MATRICES THAT ARE 22 BY 28 TO # BY #.
C CHANGE WK MATRIX TO {(#%*2)+3#,
C
INTEGER HI,P,FLAG
IAK=28
FLAG=#
Do 1# I=1,N
Do 1@ J=1,N
EXPA(I|J)=A(I|J)
12 CONTINUE
(o
C STEP 1. COMPUTE AVERAGE OF EIGENVALUES
C
AVLAM=g, Dgg
DO 15 1=1,N
AVLAM=AVLAM+EXPA(I,I}/N
15 CONTINUE
c
C STEP 2. SUBTRACT AVLAM FROM DIAGANAL ELEMENTS OF EXPA
c
DO 2& I=1,N
EXPA(I,1)=EXPALL,I)-AVLAM
28 CONTINUE
c
C STEP 3. NOW BALANCE EXPA MATRIX
Cc
DO 25 I=1,N
DO 25 J=j,R
EXPAK{(1,J)sEXPA(T,J}
25 CONTINUE

c CALL BALANCE (EXPAK,IAK,N,EXPA,IA,D,HI,LOW,B)
C STEP 4. CHECH NORM OF MATRIX EXFA

ENORM=ANORM{EXPA,IA,N}

IF (ENORM .LE. 1.DP8) THEN
FLAG=]
GOTO 5¢

END IF
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c
C STEP &. DETERMINE VALUE OF M SUCH THAT 2**{(-M)IEXPAIC1.
c

M=g
39 MaM+ ]
IF ((2.D@@**{-M))"ENORM .GT. 1.088) GOTO 32

c
C STEP 6. REDUCE NORM OF EXPA IF ENORM>1
c

DO 49 I=]1,N
DO 42 J=1,N
EXPA(I,3)=EXPA{T],J)*{2.D@F**{-M))
4R CONTINUE

STEP 7. COMPUTE PADE APPROXIMATION TO THE EXPONENTIAL OF EXPA

58 P=8g
NOTE THAT P MUST BE EQUAL TO OR GREATER THAN 2
CK=g.5D08
po 89 1=1,N
DO 7@ J=1,N
QPA{(1,J)=CK*EXPALI,J)
QPNA(I,J)=-CK*EXPA(1,J)
EXPAK(I,J)=EXPA(I,J)
78 CONTINUE
QPA{I,1)=QPA(I,1)+]).DOR
QPNA{],1)=QPNA(]I,1)+1.DRH
e CONTINUE
DO 188 K=2,¢
CK=CK*(P-K+1}/{K*{2*P~K+1})}
CALL VMULFF (EXPA,EXPAK,N,N,N,IA,TAK,AK,TAK,IERR)
DO 99 I=],N
DO 92 J=1,N
EXPAK({1,J)=AK{1,J}
QPA{1,J)=QPA{],J}+CK*AK{I,J)
QPNA(I,J)=QPNA(T, 1+ { (-1 )**KI*CK*AK(]1,J}
-1 CONTINUE
108 CONTINUE

C
C STEP 8. COMPUTE EXP(B}

106T=15

CALL LINV2F {QPNA,N,IAK,AK,IDGT,WK,IER)

CALL VMULFF (AK,QPA,N,N,N,TAK,TAK,EXPA,TA,IERR)

1F ({IER .EG. 129) .OR. (IER .EQ. 131) .OR. (IER .EQ. 34)) THEN
WRITE(6,11@) IER

118 FORMAT(1X, "MATRIX INVERSION FAILED, IER=',13)

STOP

END IF

EXPBN=ANORM{EXPA,IA,N)

G={B4*N+73)=B**(~MACHDIG}*EXPBN

O OO0

STEP 9. CHECK FLAG. IF FLAG=1 THEN GOTO STEP 11,
1F (FLAG .EQ. 1} GOTO 13%
STEP 17 SQUARE EXP{(B) M TIMES

DO 139 K=1,M
CALL VMULFF [(EXPA,EXPA,N,K,N,1A,JA,AK,IAK,1ERR)
DO 12¢ I=1,N .
po 128 J=1,N
EXPALI,J)=AKI{T,Jd}
129 CONTINUE
G=2.DEB*EXPBN*G+G**2+N*{B**{-MACHDIG))*(EXPBN"*2)
EXPBN=ANORM{EXPA,lA,N)

OO0 O00
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CONTINUE
11. COMPUTE EXP(A}
FIRST MULTIPLY BY D EXP(B) DINV

IF {HT .EQ. 1) GOTO 155
DO 158 K=LOW,HI
DO 14# I=1,N
EXPA(K, [ )=EXPALK,}}*D(K)
EXPAUI K)=EXPA(],K}/D(K}
CONTINUE
CONTINUE

APPLY PERMUTATION MATRIX

I=L0W-1

DO WHILE {1 .GE. 1)
Ji=JIDINT(D(I})
CALL EXCHANGE (EXPA,IA,N,I,J1)
1=1-1

END DO

I=HI+]

DO WHILE (1 .LE. N}
J1I=JIDINTE(D(T}}
CALL EXCHANGE (EXPA,IA,N,1,01)
I=]+1

END DO

AVLAM=DEXP{AVLAM)

DO leg 1=1,N
DO 168 J=1,N

EXPA{I,J)=AVLAM*EXPA{1,J)
CONTINUE

IF MATRIX WAS BALANCED

12. COMPUTE NOQ., OF SIGNIFICANT FIGURES IN ANSWER.

IF (HI .EQ. 1) THEN
DNORM=1.D@®
DINVN=1.D@%

GOTO 174

END IF

DMAX=1.DAg

IF {({LOW .EQ. 1) .AND. (HI .EO. N)) DMAX=0.DP@

DNORM=DMAX
DINVN=DMAX
PO 179 T1=LOW,HI
IF {D¢I) .GT. DNORM} ONORM=DII)

IF (1.098/D¢1) .GT. DINVN) DINVN=1.DBE/D{(I)

CONTINUE

SIGDIG=-DLOG1A(AVLAM*DNORM*G*DINVN/ANORM(EXPA,IA,N))

RETURN
END

ANORM computes the 1 norm of matrix A.
1A

o= Row dimension of matrix A as {n dimension

statement of calling program.
N imm Used ditmensions of matrix A

REAL FUNCTION ANORM*8 (A,IA,N}
REAL*8 A(IA,1),COLA
ANORM=0.D0¢

Do 28 J=1,N



oOOoOO0OOO0MN0O0O0

-B3-

COLA=g.DOQ
DO 1# I=1,N
COLA=COLA+DABSIA(I,J))
19 CONTINUE
1F (COLA .GT. ANORM) ANORM=COLA
20 CONTINUE
RETURN
END
This program balances matix A and places the result fn matrix BAL.
The diagonal elements of D are stored in the D matrix from LOW to
HI. The information for the permutation matrix {s stored in the
D matrix from 1-(LOW-1) and (HI+1})-N. B is the radix base of the
computer (B=2 for vax)
This program call subroutine EXCHANGE
See B. N, Parlett, NUMER. MATH. 13, 293-304 {1969).
WHEN CALLING “BALANCE®, MARICES A AND BAL MUST OCCUPI DIFFERENT LOCATIONS
IN MEMORY. IF ON RETURN, HI=l THEN NO MANIPULATION WAS DONE
ON EITHER MATRIX.

SUBROUTINE BALANCE{(A,1A,N,BAL,IB.D,HI,LOW,B}
IMPLICIT REAL*B (A-H,0-2)
DIMENSION A{JA,]JA),BAL{1B,IB)},D{1}
INTEGER LOW,HI1,FLAG
DO 1§ I=],N
PO 1 J=1,N
BAL{1,0)=A{I,J}
CONTINUE

18
C SEARCH FOR ROWS ISOLATING AN EIGENVALUE AND PUSH THEM DOWN

oD

B2=B*B
K=N
L=1
J=K
DO WHILE (J .GE. 1)
R=g.DoR
DO 15 I=],K
IF tI .EQ. J) GOTO 15
R=R+DABS{BAL(J,1}}

15 CONTINUE

IF (R .EQ. £.D82) THEN
D(K)=J
CALL EXCHANGE (BAL,IB,N,.K,J}
K=K-1
GOTO 12

END IF

J=d-1

END DO

CHECK TO SEE IF MATRIX IS BALANCEABLE IF NOT RESET MATRIX & RETURN

IF (K .EQ. &) THEN
HI=1
LOW=1
po 16 I=1,N
bo 16 J=1,N
BAL{1,d)=ALl ]

16 CONTINUE

RETURN
END IF

€ SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE AND PUSH THEM LEFT

17 DO 28 J=L,K

Cagy.DOR
DO 25 I=L,K
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1IF {1 .EQ. J) GOTO 25
C=C+DABS(BAL(I,J)}

CONTINUE

IF (C .EQ. #.DPF) THEN
DiL)=
CALL EXCHANGE {(BAL,IB,N,L,J)
L=tL+}
GOTO 17

END IF

CONTINUE

NOW DETERMINE ELEMENTS FOR DIAGONAL MATRIX D

LOW=L
HlakK
00 26 I=L,K
DtI)=l.DBE
CONTINUE
FLAG=Z
Do &8# I=L,K
C=g.080
R=0.008
DO 38 J=L,K
IF (3 .EQ. I} G
C=C+DABS{BAL(J,
R=R+DABS{BAL{I,
CONTINUE
G=R/B
F=1.D28
S=C+R
IF (C .LT. G) THEN
F=F*B
C=C*B2
GOTO 35
END IF
G=R*"B
If (C .GE. G} THEN
F=F/B
C=C/B2
GOTO 48
END IF
IF t({C+R)/F) .LT. (@.95008*5)) THEN
G=1/F
plI)=DUI1}*F
FLAG=1
DO 45 J=L,N
BAL(I,J)=BAL{I,J}*G
DO 47 J=1,K
BAL(J,I1)}=BAL{J,I}*F

TO 38
¥}
¥)

END IF
CONTINUE
IF {(FLAG .EQ. 1} GOTO 27
RETURN
END

EXCHANGE exchanges row and column M with row and column J of matrix A.
1A s the dimenston of A in the dimension statement of the calling prog.

SUBROUTINE EXCHANGE (A,IA,N,M.J)
REAL*8 A(IA,1A),F
IF {J .NE. M) THEN
DO i@ I=1,N
F=A(1,J)
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A(],3)=ALL M)
All ,M)=F

CORTINVE

po 16 I=1,N
AL, 1)=A(M, 1}

A(M,1)=F

CONTINUE

END 1IF

F=A{J,1)
RETURN

END

17
15



