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Abstract

Ecosystems exhibit nonlinear dynamics that are often difficult to capture in models. Consequently, linearization is commonly
applied to remove some of the uncertainties associated with the nonlinear terms. However, since the true model is unknown and
the operating point to linearize the model about is uncertain, developing linear ecosystems models is non-trivial. To develop a
linear ecosystem model, we assume that the annual mean state of an ecosystem is a minor bias from the long-term mean state. A
first order approximation inverse model to govern the year-to-year dynamics of ecosystems whose characteristic time scales are
less than 1 year is developed, through theoretically formulation, on the basis of steady state analysis, time scale separation and
nondimensionalization. The approach is adept at predicting year-to-year variations and to tracking system response to changes
in environmental drivers when compared to data generated with a standard nonlinearNPZD model.
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. Introduction

One of the primary goals of ecology is to understand
he response of an ecosystem to changes in environ-
ental drivers. The realization of this goal is that one

an predict the ecosystem’s variation to environmen-
al drivers once an appropriate model has been devel-
ped. The basis of model development is mathemat-

cally approximating the instantaneous and/or short-
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term response of the organism to its environment.
example, the temperature–photosynthesis relations
Q

(T−10)/10
10 (Eppley, 1972), the light–photosynthesis

relationship, (I/Io) exp(1− (I/Io)) (Steel, 1962), the
Michaelis–Menten function,N/(N + K), are all instan-
taneous functions with respect to environmental va
ables of temperatureT, light intensityI, and limiting
nutrient concentrationN, respectively. However, the
practical concern in environmental ecology is oft
the year-to-year variations and/or long-term variatio
rather than short-term ones. For example, annual y
in fishery ecology is the scale of interest, not instan
neous or daily yield.
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There are two major challenges to develop a model
based on the rules governing the instantaneous biology-
environment interactions. First, one needs to supply
information that describes the short-term changes in
environmental drivers; however, it is difficult to obtain
accurate predictions on the dynamics of environmen-
tal drivers very far into the future, which is necessary
for daily/seasonal ecological model simulations. Gen-
erally, long-term trends are less difficult to obtain, such
as annual average temperature 50 years into the future.
Second, short-term tends are more difficult to under-
stand and explain than long-term trends. Consider fish-
ery yield. A daily yield hardly makes sense. Daily vari-
ation has a far larger range than that of the annual mean
daily yield. Models used to describe short-term dynam-
ics require more state variables and more parameters
for each state equation than models used to describe
annual mean variations.

If instead, the modeling focus is placed on long-
term trends, then the above two challenges can be
mitigated. However, the rules that govern the long-
term mean response cannot be derived from the rules
that govern short-term dynamics. For instance, it has
been shown that calculating long-term expected val-
ues of temperature dependent functions can seldom be
achieved by applying the functions to mean temper-
ature (Lischke et al., 1997), because temperature de-
pendencies are often nonlinear. Short-term rules are
developed through short-term experiments and/or ob-
servations. It is possible to do the same for long-term
r rva-
t eth-
o art-
m
y gh
s edic-
t fo-
c ble
t is
m r-
d sys-
t h al-
l be
p tal
d

me
s em-
p el

to describe the year-to-year dynamics of an ecosystem
in which nutrient and organismal concentrations are
annual averaged. An inverse method is used to esti-
mate model parameters. A typicalNPZD compartment
model is used to generate simulated observations and
test the first order approximation model. A forecast ex-
periment is carried out to test the predictive capability
of this model.

2. Model formulation

2.1. A steady state analysis

Although steady state analysis applied to ecosys-
tems has an extensive and controversial history
(Nilsson and Grelsson, 1995), the qualitative concepts
will be useful for our model development and should
not be interpreted in a strict mathematical sense. A ma-
ture ecosystem can be thought of as being in a steady
state or, if inherently chaotic, in low amplitude os-
cillations about an attractor. This steady state allows
for diel and annual fluctuations, but the ecosystem’s
description necessarily takes place at some averaged
level. Given a permanent alteration of the ecosystem
drivers, it will settle on a new steady state, again in
some spatially and temporally averaged sense (van den
Berg, 1998). What do we consider a mature ecosys-
tem? What alterations may be considered as perma-
nent? We tentatively assume that an ecosystem remains
a con-
s en
t sys-
t ain
t h a
n me
o a
p an 1
m

r a
p nts:
n
t n
F ged
s
a
fl
fl

ules provided long-term experiments and/or obse
ions are available. If data are available, inverse m
ds can be used to estimate flows between comp
ents (Vézina and Platt, 1988); however, flow anal-

sis models cannot be used for prediction. Althou
tandard state space models can be used for pr
ion, almost all of the models developed thus far
us on short-term dynamics and are not applica
o long-term behavior. The main contribution of th
anuscript is to combine flow analysis with first o
er approximations of process rates to predict eco

em annual dynamics. Consequently, our approac
ows the long-term response of an ecosystem to
redictable from the long-term mean environmen
rivers.

In brief, steady state analysis, linearization, ti
cale separation, and dimensional analysis are
loyed to formulate a first order approximation mod
t steady state, once the environmental drivers are
tant with respect to a given temporal scale. Wh
he surroundings change to a new value, the eco
em will transfer to a new steady state after a cert
ransient time. The transient time required to reac
ew steady state is on the order of the doubling ti
f the slowest growing organism. For example, in
lanktonic ecosystem, the response time is less th
onth.
For model development purposes, we will conside

lankton ecosystem composed of four compartme
utrient N, phytoplanktonP, zooplanktonZ and de-

ritus D with mass flow connectivity as illustrated i
ig. 1. We assume that under the long-term avera
urroundings of temperaturē̄T and light ¯̄L, this system
ttains a steady state (SS) with stocks¯̄N, ¯̄P , ¯̄Z, ¯̄D, and
uxes ¯̄f 1, ¯̄f 2, ¯̄f 3, ¯̄f 4 and ¯̄f 5. According to the mass
ow connectivity (Fig. 1), the following conservation
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Fig. 1. Food web of a typical marine plankton ecosystem model.N,
P, Z, andD stand for concentrations of dissolve inorganic nutrient,
phytoplankton, zooplankton and detritus, respectively.

equations exist under SS conditions,

¯̄f 5 − ¯̄f 1 = 0
¯̄f 1 − ¯̄f 2 − ¯̄f 3 = 0
¯̄f 2 − ¯̄f 4 = 0
¯̄f 3 + ¯̄f 4 − ¯̄f 5 = 0.

(1)

Once the surroundings change to a new state with
temperaturēT and lightL̄, the system reaches a new
SS with stocksN̄, P̄ , Z̄ andD̄ and fluxesf̄1, f̄2, f̄3,
f̄4 andf̄5. During the transient period�θ, this system
may be approximated with fixed fluxesf̂1, f̂2, f̂3, f̂4
andf̂5 and constant state change,

f̂5 − f̂1 = N̄ − ¯̄N

�θ

f̂1 − f̂2 − f̂3 = P̄ − ¯̄P

�θ

f̂2 − f̂4 = Z̄ − ¯̄Z

�θ

f̂3 + f̂4 − f̂5 = D̄ − ¯̄D

�θ
.

(2)

We now place the above example in general form.
Definex as the ecosystem state vector,e the environ-
mental driver vector,f the flux vector andA as the ma-
trix which represents the food web connectivity. The
dynamics of this ecosystem can then be expressed as,

dx = Af (x, e) (3)

w
r

stock is ¯̄x and the flux is¯̄f , so Eq.(1) can be written
as,

A ¯̄f = 0. (4)

We assign definitions of̄x, ē andf̄ for the second
SS similar tō̄x, ¯̄e and ¯̄f for the first SS. The approxima-
tion of the system dynamics during the transient period
between two steady states may be expressed as,

Af̂ = x̄ − ¯̄x

�θ
(5)

wheref̂ stands for the average flux vector during the
transient period.

Linearization is a common mathematical approach.
However, choosing the appropriate operating point to
linearize around can be challenging, since the lin-
ear model approximates the true system only in the
neighborhood of the chosen operating point. Lineariza-
tion is uncommon in ecological modeling, although
there are applications in flow estimation and sensitiv-
ity analysis (Kooi et al., 2002; K̈ohler and Wirtz, 2002;
Diffendorfer et al., 2001; van den Berg, 1998). A SS
may be an ideal operating point for linearization about.
Thus, a Taylor expansion off̂about¯̄x and¯̄e, evaluated
at x̄ andē, keeping only the first order terms, gives an
approximation for̂f ,

f̂ ∼= ¯̄f + ∂f

∂x

∣∣∣∣
¯̄x,¯̄e

(x̄ − ¯̄x) + ∂f

∂e

∣∣∣∣
¯̄x,¯̄e

(ē − ¯̄e) (6)

For simplicity, we define matrixesG1 andG2 in the
f

b

A

d
f za-
t ar.
S va-
l -
d ng
p not
dθ

hereθ is the time, andf depends onx ande. With
espect to the first SS, the environmental driver is¯̄e, the
ollowing expression,

G1 = ∂f

∂x

∣∣∣∣
¯̄x,¯̄e

G2 = ∂f

∂e

∣∣∣∣
¯̄x,¯̄e

.

(7)

Therefore, Eq.(5), with application of Eq.(4), can
e rewritten as,

(G1(x̄ − ¯̄x) + G2(ē − ¯̄e)) ∼= x̄ − ¯̄x

�θ
. (8)

Eq.(8) is a first order approximation model derive
rom a steady state analysis combined with lineari
ion, but the representation of time scale is uncle
ince Eq.(5) represents the transient response, the

idity of the linearization, Eq.(6), is time scale depen
ent. It may literally represent an evenly transformi
rocess from one steady state to another, but may
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be applicable to all SS transitions. The following time
scale analysis will explain the meaning of the evenly
transforming process from the long-term mean state to
the annual mean state.

2.2. Time scale separation

Choice of the appropriate time scale is also an import
consideration for model development. Time scale sep-
aration is quite common in geophysics. For example,
hydrodynamic time scales are classified as circulation,
tidal current and turbulent current in oceanography.
Time scale concepts have been recognized in ecology
recently. Although different time scales were assumed
in the trophic levels byKooi et al. (1998), no complete
time scale separation was carried out. Similarly, differ-
ent methods were used for hourly, daily, and monthly
temperatures to describe the temperature dependency
of an ecosystem (Lischke et al., 1997). We associate
the primary SS with a long-term mean state of a pris-
tine ecosystem and the secondary SS with the annual
mean state. We formulate the first order approximation
model through time scale separation in the following
context.

We define the long-term mean values ofx, e, andf,
which are time dependent as,

¯̄x =
∫ +∞

−∞
x(θ) dθ

¯̄e =
∫ +∞

e(θ) dθ . (9)

θ

w
f ss
t

t

x′′(n�θ, δt) = x(θ) − x̄(n�θ)
e′′(n�θ, δt) = e(θ) − ē(n�θ)
f ′′(n�θ, δt) = f (θ) − f̄ (n�θ),

(12)

and the annual mean biases from the long-term mean,

x′(n�θ) = x̄(n�θ) − ¯̄x
e′(n�θ) = ē(n�θ) − ¯̄e
f ′(n�θ) = f̄ (n�θ) − ¯̄f .

(13)

According to the above definitions,x(θ), e(θ), and
f(θ) can be expressed as,

x(θ) = ¯̄x + x′(n�θ) + x′′(n�θ, δθ)
e(θ) = ¯̄e + e′(n�θ) + e′′(n�θ, δθ)
f (θ) = ¯̄f + f ′(n�θ) + f ′′(n�θ, δθ)

. (14)

We approximate the flux functionf(θ) = f(x,e) about
an arbitrary point, (x0,e0), keeping only the first order
terms,

f (θ) = f (x, e)

∼= f 0 + ∂f

∂x

∣∣∣∣
x0,e0

(x − x0) + ∂f

∂e

∣∣∣∣
x0,e0

(e − e0).

(15)

We use the time scale representations ofx ande, Eq.
(14), to get,

f (θ) = f (x, e)

∼= f 0+
∂f

∂x

∣∣∣∣
x0,e0

( ¯̄x + x′(n�θ) + x′′(n�θ, δθ) − x0)

∣

-
t

s s
(

x

−∞
¯̄f =

∫ +∞

−∞
f (θ) dθ

We express timeθ by two scales,

= n∆θ + δθ, (10)

heren stands for year number,�θ for 1 year andδθ
or seasonal time, whose maximum increment is le
han�θ. We define annual mean values,

x̄(n�θ) =
∫ +�θ/2

−�θ/2
x(n�θ + δθ) dδθ

ē(n�θ) =
∫ +�θ/2

−�θ/2
e(n�θ + δθ) dδθ

f̄ (n�θ) =
∫ +�θ/2

−�θ/2
f (n�θ + δθ) dδθ

(11)

he seasonal variations,
+ ∂f

∂e

∣∣∣
x0,e0

(¯̄e + e′(n�θ) + e′′(n�θ, δθ) − e0).

(16)

Once we separatef(θ) into its time scale represen
ation, Eq.(14), we have,

f ′(n�θ) = G1x
′(n�θ) + G2e

′(n�θ)
f ′′(n�θ, δθ) = G1x

′′(n�θ, δθ) + G2e
′′(n�θ, δθ).

(17)

When we integrate Eq.(3) from timeθ0 to timeθ, as-
umingθ − θ0 =�θ, using the time separated variable
Eq.(14)), we obtain,

¯̄+ x′(n�θ) + x′′(n�θ, δθ)

= x(θ0) +
∫ θ

θ0

A
(

¯̄f + f ′(n�θ) + f ′′(n�θ, δθ)
)

× dδθ (18)
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Since the initial conditions,x(θ0), are typically not
well known and their influence on the current state
rapidly decays with time, we can setx(θ0) equal to
the long-term mean,̄̄x, with little loss of generality.
Thus, we can transform Eq.(18) into the following
form,

x′(n�θ) + x′′(n�θ, δθ)

= �θA ¯̄f + �θAf ′(n�θ) +
∫ δθ

δθ−�θ

Af ′′(n�θ, δθ)

× dδθ. (19)

We separate the time scales, which gives us the fol-
lowing two equations,

x′′(n�θ, δθ) =
∫ δθ

δθ−�θ

Af ′′(n�θ, δθ) dδθ (20)

x′(n�θ) = �θA ¯̄f + �θAf ′(n�θ). (21)

With substitution of Eqs.(4) and (17)into Eq.(21),
we obtain,

x′(n�θ) = �θAf ′(n�θ)

= �θA(G1x
′(n�θ) + G2e

′(n�θ)). (22)

Eq. (22) is similar to Eq.(8), but is specific for the
annual mean bias from the long-term mean, which is
the time scale of interest.

2

a
p les.
T re-
l nd
p oss
s
A on
d en-
s ized
( rg,
1 is
n ion
o ber
o
s on.

The basic ecosystem dimensions are [θ], [x], and [e]
for θ, x ande, respectively. AlthoughG1, andG2 are
defined by Eq.(7), we can consider them as unknown
model parameters that have the following units,

[G1] = [θ]−1

[G2] = [θ]−1[x][e]−1.
(23)

Dimensionless coefficients have wide generality
and enable cross-site use (Stephen and Dunbar, 1993).
Using�θ, ¯̄x, and¯̄e as critical variables with dimensions
[θ], [x], and [e], we can replace the model parameters
G1, G2 with dimensionless coefficientsC1, C2,

C1 = G1�θ

C2 = G2�θ ¯̄x−1¯̄e.
(24)

2.4. The first order approximation inverse model

With substitution of Eq.(24)into Eq.(22)we obtain,

x′(n�θ) = �θAf ′(n�θ)

= A

(
C1x

′(n�θ) + C2
¯̄x
¯̄e
e′(n�θ)

)
, (25)

which is the first order approximation model for year-
to-year dynamics, and forms the basis for all subse-
quent development. Since one can introduce different
c s
o ua-
t
a ut
r
t les,
b ole
e

3
m

er
a -
t ch,
d
m

.3. Dimensional analysis

Dimensional analysis transforms the variables in
roblem to a reduced set of dimensionless variab
his transformation helps to reveal the nature of

ationships among variables, simplifies modeling, a
roduces predictions that are readily compared acr
pecies and conditions (Stephen and Dunbar, 1993).
lthough most ecosystem models are not based
imensionless variables, the convenience of dim
ionless parameters has been increasingly recogn
Ebert et al., 2001; Wan et al., 2000a; van den Be
998). The application of dimensionless variables
ot only convenient to generalize the representat
f model parameters, but can also reduce the num
f model parameters. We introduce the notation [·] to
tand for the dimension of a variable or an expressi
ritical variables, this model may have different form
f rescaled dimensionless variables. This model eq

ion is linear, but implicit. The model parametersC1,
nd C2 do not have direct biological meanings, b
eflect the influence ofx and e on f′. Consequently,
he parameters cannot be derived from first princip
ut can be determined by inverse methods in a wh
cosystem context.

. Application of approximation model to
arine foodweb

Here we demonstrate application of the first-ord
pproximation model (Eq.(25)) to a marine ecosys

em. However, to facilitate analysis of our approa
ata will be generated using a standard nonlinearNPZD
odel instead of actual observations.
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3.1. NPZD model

We use a standard marine plankton model (Fig. 1)
to generate simulated observations that are governed
by the following differential equations (Wan et al.,
2000b),

dP

dt
= q10p20.1T−1.0 I

Io
exp

(
1 − I

Io

)
N

N + KN

P

−mPP − q10z20.1T−1.0 P

P + KP

Z

dZ

dt
= βq10z2

0.1T−1.0 P

P + KP

Z − mZZ

dN

dt
= −q10p20.1T−1.0 I

Io
exp

(
1 − I

Io

)

× N

N + KN

P + γD
dD

dt
= mPP + mZZ

+(1 − β)q10z20.1T−1.0 P

P + KP

Z − γD
(26)

whereP, Z, N, D, T, and I stand for phytoplankton,
zooplankton, nutrients, detritus, water temperature and
solar intensity, respectively. The model parameters are
described inTable 1.

In this simplified model, phytoplankton respiration
is accounted for by reducing their specific growth rate.
Both mortality rates of phytoplankton and zooplankton
are assumed proportional to compartment concentra-
tion. A fixed fraction of total zooplankton consump-
t to
d ion
r

3
N

ns.
T
w

According to Eqs.(25) and (27), the first order
approximation of year-to-year flux variations may be
written as,

f ′
1 = c11N

′ + c12P
′ + c15

¯̄N
¯̄T

T ′ + c16

¯̄N
¯̄T

I ′

f ′
2 = c22P

′ + c23Z
′ + c25

¯̄P
¯̄T
T ′

f ′
3 = c32P

′

f ′
4 = c42P

′ + c43Z
′ + c45

¯̄Z
¯̄T
T ′

f ′
5 = c54D

′

. (28)

whereC11, C12, C15, C16, C22, C23, C25, C32, C42,
C43, C45, andC54 are the coefficients of the first or-
der approximation to the fluxes. Note that the sym-
bol x′ stands for the annual mean bias ofx from its
long-term mean, as before, and thatx′ is actually a
function of n�θ; however, we drop the dependency
(n�θ) for simplicity hereafter. We note here that Eq.
(28) is typically constructed from knowledge about
the ecosystem under study, and not from a preexist-
ing model, as in this example. Substituting Eq.(28)
into Eq. (25) and noting�θ = 1 year, the first order
approximation model for the NPZD marine ecosystem
becomes,


N ′
P ′
Z′

′


 =




−1 0 0 0 1
1 −1 −1 0 0
0 1 0 −1 0




w
t

3

el
p

ion is allocated to growth while the rest contributes
etritus production. A constant detritus decomposit
ate is used.

.2. A first order approximation model for the
PZD ecosystem

Eq.(25)is used to approximate the flux expressio
here are five fluxes in the simulated food web (Fig. 1),
hich are given by,

f1 = q10p20.1T−1.0 I

Io
exp

(
1 − I

Io

)
N

N + KN

P

f2 = q10z20.1T−1.0 P

P + KP

Z

f3 = mPP

f4 = (1 − β)q10z20.1T−1.0 P

P + KP

Z + mZZ

f5 = γD

(27)
D 0 0 1 1 −1

×




c11N
′+c12P

′+c15

¯̄N
¯̄T

T ′ + c16

¯̄N
¯̄I

I ′

c22P
′ + c23Z

′ + c25

¯̄P
¯̄T
T ′

c32P
′

c42P
′ + c43Z

′ + c45

¯̄Z
¯̄T
T ′

c54D
′




,

(29)

hereN′, P′, Z′, andD′ are the unknowns andT ′, I′ are
he environmental drivers.

.3. Inverse method

An inverse method is used to solve for the mod
arameters,C11, C12, C15, C16, C22, C23, C25, C32,
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Table 1
Parameters of the nonlinearNPZD model whereq10p stands for the growth rate of phytoplankton at 10◦C, Io is the optimum solar radiation,KN

is the half saturation constant forN uptake byP, mp is the mortality rate of phytoplankton,q10z is the predation rate of zooplankton at 10◦C, β
is the assimilation efficiency of zooplankton,mz is the mortality rate of zooplankton,Kp is the half saturation constant forP uptake by Z andγ
is the decomposition rate of detritus

Symbol q10p Io KN mp q10z � mz Kp γ

Case 0 2.0 100 0.5 0.05 1.0 0.4 0.15 0.8 0.02
Case 1 2.4 S S S S S S S S
Case 2 1.8 S S S S S S S S
Case 3 S S 0.7 S S S S S S
Case 4 S S 0.3 S S S S S S
Case 5 S 120 S S S S S S S
Case 6 S 80 S S S S S S S
Case 7 S S S 0.15 S S S S S
Case 8 S S S 0.02 S S S S S
Case 9 S S S S 1.2 S S S S
Case 10 S S S S 0.8 S S S S
Case 11 S S S S S S 0.05 S S
Case 12 S S S S S S 0.20 S S
Case 13 S S S S S S S 1.0 S
Case 14 S S S S S S S 0.5 S
Case 15 S S S S S 0.6 S S S
Case 16 S S S S S 0.2 S S S
Case 17 S S S S S S S S 0.03
Case 18 S S S S S S S S 0.01
Unit D−1 Einsteins mmol Nm−3 D−1 D−1 – D−1 mmol Nm−3 D−1

S stands for the value same as in Case 0.

C42, C43, C45, andC54. Eq.(29) can be converted to a
set of equations with respect to the model parameters,
as shown here




−N ′ −P ′ −
¯̄N
¯̄T

T ′ −
¯̄N
¯̄I

I ′ 0 0 0 0 0 0 0 D′

N ′ P ′
¯̄N
¯̄T

T ′ ¯̄N
¯̄I

I ′ −P ′ −Z′ −
¯̄P
¯̄T
T ′ −P ′ 0 0 0 0

0 0 0 0 P ′ Z′
¯̄P
¯̄T
T ′ 0 −P ′ −Z′ −

¯̄Z
¯̄T
T ′ 0

0 0 0 0 0 0 0 P ′ P ′ Z′
¯̄Z
¯̄T
T ′ −D′




×




c11
c12
c15
c16
c22
c23
c25
c32
c42
c43
c45
c54




=




N ′
P ′
Z′
D′


 . (30)

This set of equations has more unknowns than equa-
tions, thus it is under-determined; however, Eq.(30)can
be applied to each year data is available. Once there are

sufficient observations, this equation may become over-
determined and yield a unique solution. We introduce

A(n) andb(n) to stand for the matrix on the left hand
side of Eq.(30)and the vector on the right hand side at
yearn, respectively, andc for the vector of unknowns.
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A least-squares objective function can written as,

J =
N∑

n=1

(A(n)c − b(n))2, (31)

where the vector of model parameters,c, can be deter-
mined through minimizingJ.

3.4. Prediction

After c is determined, Eq.(29) may be regarded as
an equation set with respect to unknownsN′, P′, Z′, and
D′, as given by




1 + c11 c12 0 −c54
−c11 1 − c12 + c22 + c32 c23 0

0 −c22 + c42 1 − c23 + c43 0
0 −c32 − c42 −c43 1 + c54






N′
P ′
Z′
D′


 =




−c15

¯̄N
¯̄T

T ′ − c16

¯̄N
¯̄T

I ′(
c15

¯̄N
¯̄T

− c25

¯̄P
¯̄T

)
T ′ + c16

¯̄N
¯̄I

I ′

(
c25

¯̄P
¯̄T

− c45

¯̄Z
¯̄T

)
T ′

c45

¯̄Z
¯̄T
T ′




(32)

The vector on the right hand side represents envi-
ronmental forces. The matrix on the left hand side con-
sists of components of vectorc and maps year-to-year
variations in the environmental driving to year-to-year
v

3

er-
r odel
v
m on-
m e
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w low
a Eq.
( t.
B
a
t
1
d

both temperature and light have far less year-to-year
variation than in the first 40 years. The purpose is to
generate different year-to-year variations. Data gener-
ated in the first 40 years will be used for parameter
estimation in the first order approximation model, and
the data collected then after will be used to test the
predictive capability of the model.

The initial conditions for theNPZD model are 1.0,
0.5, 0.2, and 3.0 mmol N m−3 for N, P, Z, andD, re-
spectively. A simple Euler difference scheme is used
to integrate the model equations (Eq.(26)). The time
step is 0.1 h, and the model runs for 80 years. Values

of N, P, Z, D, T, andI are output 10 times per year to
develop annual mean data set (Fig. 2).

3

is
u
(
E r-
d res
c
C

l
a we
c
(simulated) annual mean biases as follows. We usec
ariations in the ecosystem.

.5. Data generation

To remove problems associated with data gaps,
ors in measurements, and mismatches between m
ariables and actual observations, we run theNPZD
odel mentioned above to generate data. The envir
ental drivers required for model simulation includ
ater temperature and solar radiation just below t
ater surface. We assume the water depth is shal
nd both temperature and light are even. We use
A.1) (Appendix A) to generate temperature and ligh

oth temperature and light include a long-term mean,
year-to-year variation and a seasonal variation. The

emperature has a long-term variation with a period of
0 years in the first 40 years and the light is similarly
riven with a period of 15 years. In the next 40 years,

a
e
c
v
a

.6. Parameter estimation

The data set collected in the first 40 years
sed to estimate the model parameter vectorc in Eq.
30). As Eq. (30) is linear, the minimization ofJ,
q. (31), may be achieved through solving an ove
etermined linear equation set under a least-squa
onstraint. The solution vectorc is listed inTable 2as
ase 0.
In order to examine how well the first order mode

pproximates the observed (simulated) system,
ompare predicted annual mean biasesx′ to observed
long with the observed values ofx′, ¯̄x, e′, and ¯̄e to
stimatex′ via Eq. (29). This may appear to be cir-
ular reasoning, but inspection of Eq.(30) (or 31) re-
eals an important aspect in estimatingc. Becausex′
ppears on both sides of Eq.(30), the value ofc that
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Fig. 2. Data generated with theNPZD model. The thin line stands for the seasonal dynamics and the thick line stands for annual means.N, P,
Z, andD are concentrations of dissolve inorganic nutrient, phytoplankton, zooplankton and detritus, respectively. All variables are in units of
mmol N m−3.

minimizes Eq.(31)need not produce a model that con-
serves mass. Only when the first order model accurately
represents the true system is mass conserved and the
equality of Eq.(30) met. If mass conservation is sig-
nificantly violated, then the predictedx′ will not com-
pare well to the observedx′. Hence, by relaxing the
mass conservation constraint in the minimization pro-

cedure, we obtain information on how well the first
order model approximates the real system. In the sim-
ulatedNPZD system, we see that the first order ap-
proximation, Eq.(29), is a good representation of the
actual nonlinear system (Fig. 3). If the model fit to
observations were poor, it would be necessary to re-
formulate the first order model, Eq.(29), using differ-



378 Z. Wan, J. Vallino / Ecological Modelling 187 (2005) 369–388

Table 2
Parameters of the first order approximation model and prediction precisions, where C11, C12, C13, C14, C21, C22, C23, C31, C41, C42, C43, and
C51, are the first order approximation model parameters

Case C11 C12 C13 C14 C21 C22 C23 C31 C41 C42 C43 C51 E1 (%) E2 (%)

0 −0.39 0.29 0.005 0.003 −0.34 0.05 0.01 −0.34 −0.18 −0.01 −0.03 −0.33 76 73
1 −0.39 0.28 0.008 0.003 −0.35 0.04 0.01 −0.35 −0.18 −0.01 −0.03 −0.33 85 76
2 −0.39 0.29 0.007 0.003 −0.34 0.05 0.00 −0.34 −0.18 −0.01 −0.03 −0.34 59 61
3 −0.40 0.29 0.004 0.002 −0.34 0.06 0.00 −0.33 −0.18 0.00 −0.03 −0.34 60 62
4 −0.39 0.28 0.006 0.003 −0.35 0.03 0.01 −0.35 −0.19 −0.02 −0.03 −0.33 85 75
5 −0.39 0.29 0.000 0.003 −0.34 0.04 0.00 −0.35 −0.18 −0.01 −0.04 −0.34 75 69
6 −0.40 0.29 −0.01 0.003 −0.34 0.05 0.01 −0.34 −0.18 −0.01 −0.03 −0.34 65 65
7 −0.12 0.45 0.020 0.004 −0.48 0.03 0.05 −0.04 −0.04 0.03 0.10 −0.82 83 77
8 −0.61 0.28 0.010 0.003 −0.27 0.36 −0.08 −0.43 −0.24 −0.15 −0.06 −0.29 89 82
9 −0.40 0.31 −0.01 0.003 −0.33 0.06 −0.02 −0.34 −0.17 −0.00 −0.04 −0.34 89 82

10 −0.43 0.28 0.009 0.003 −0.35 0.11 −0.07 −0.34 −0.18 −0.08 0.11 −0.34 83 74
11 −0.30 0.44 −0.01 0.003 −0.34 0.16 −0.03 −0.17 −0.10 0.08 −0.03 −0.57 80 78
12 −0.51 0.27 0.006 0.004 −0.30 0.28 0.04 −0.37 −0.22 −0.19 0.12 −0.32 87 79
13 −0.41 0.28 0.020 0.003 −0.35 0.05 0.01 −0.35 −0.18 −0.02 0.01 −0.33 89 84
14 −0.45 0.35 0.009 0.009 −0.31 0.13 −0.06 −0.31 −0.16 0.03 −0.10 −0.38 85 80
15 −0.31 0.44 0.005 0.009 −0.33 0.18 −0.04 −0.18 −0.11 0.04 −0.03 −0.57 84 82
16 −0.44 0.27 0.004 0.003 −0.32 0.12 −0.02 −0.38 −0.20 −0.06 −0.01 −0.31 91 83
17 −0.41 0.30 0.009 0.003 −0.34 0.07 −0.01 −0.33 −0.18 −0.03 −0.01 −0.34 84 83
18 −0.37 0.28 0.008 0.003 −0.33 0.12 −0.05 −0.36 −0.20 −0.10 0.04 −0.33 86 77
19 −0.39 0.29 0.005 0.003 −0.34 0.05 0.01 −0.34 −0.18 −0.01 −0.03 −0.33 76 83
20 −0.39 0.29 0.005 0.003 −0.34 0.05 0.01 −0.34 −0.18 −0.01 −0.03 −0.33 76 52
21 −0.42 0.33 −0.09 0.01 −0.33 0.41 0.02 −0.16 −0.16 −0.20 0.57 −0.51 80 73

E1, E2 are the hindcast and forecast precisions. Case 0 is referred as the reference run, Cases 1–18 as the parameter sensitivity runs, Cases 19
and 20 as different environmental driving runs and Case 21 as the observation error run.

ent dependencies and perhaps different compartment
connectivity.

3.7. Hindcast and forecast

The objective of the first order approximation model
is to predict year-to-year variations of an ecosystem
from the annual mean values of the environmental
drivers,e′, (T′ and I′ in this example), the long-term
mean values̄̄x and ¯̄e ( ¯̄P , ¯̄Z, ¯̄T , and ¯̄I here), and the
vectorc according to the prediction formulation (Eq.
(32)).

For the simulated system, we run the prediction
over 80 years, where the first 40 years may be con-
sidered as the hindcast period, and the next 40 years
as the forecast period. The comparison of the pre-
dicted year-to-year variations against the data is shown
in Fig. 4. The predicted variations match the data
well in terms of both pattern and amplitude. To quan-
tify model fit, we define the total mean prediction

precision as,

ε1−40 = 100


1 − 1

4

4∑
j=1

1/40
∑40

i=1|x̄∗
j (i) − xj|

40
max
i=1

|x̄j(i) − xj|


 ,

ε41−80 = 100


1 − 1

4

4∑
j=1

1/40
∑80

i=41|x̄∗
j (i) − xj|

40
max
i=1

|x̄j(i) − xj|


 ,

(33)

whereε1–40stands for the hindcast precision,ε41–80for
the forecast precision, andx∗

1,x∗
2,x∗

3, andx∗
4 for N, P, Z,

andD, respectively. For the model fit based on the first
40 years of data,ε1–40 andε41–80 equal 76 and 73%,
respectively (Table 2, Case 0). This error analysis indi-
cates that the model fits the observations well, based on
hindcast results, and that the model forecast does not
degrade even when environmental drivers differ from
those used to calibrate the model.
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Fig. 3. Comparison of the first order approximation (solid line) with data (diamond) during following data assimilation via Eqs.(30) and (31).
Note, because of the implicit nature of Eq.(30), mass need not be conserved. All variables are in units of mmol N m−3.

4. Model analysis and discussion

4.1. Parameter sensitivity

The vectorc contains the parameters of the first or-
der approximation model, but the value ofc depends on
the parameters of the simulation, or true, model (Eq.
(26), Table 1). Changes of the simulation model pa-

rameters represent different ecosystems that have sim-
ilar structures and connections, but perhaps different
species. We want to examine how the first order model
responds, both in accuracy of fit and value ofc, to pa-
rameter changes in the simulated model, Eq.(26). To
accomplish this, we changed one parameter value at a
time and ran the NPZD model to regenerate a data set
as we did in Case 0, then examined the fit statistics, Eq.
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Fig. 4. Comparison of predicted year-to-year variations (dashed line) by the first order approximation model (Eq.(32), mass conserving) to
data (solid line) generated with the nonlinear model (Eq.(26)). The nonlinear model is run under environmental drivers of Eq.(A.1) and with
parameters listed inTable 1as Case 0. All variables are in units of mmol N m−3.

(33), and the newc values obtained from minimizing
Eq. (31). Parameters in the simulation model were in-
creased or decreased by as much as 100% (Table 1), but
we decreased the magnitude of the parameter pertur-
bation if the perturbation resulted in an unstable sim-
ulation. For instance, whenq10P is increased from 2.0
to 4.0, the ecosystem collapses, which is not of interest
for the sensitivity analysis.

The estimatedc values and the prediction precisions
for each perturbation (Table 1) are listed inTable 2as
Cases 1–18. In the first 19 cases (0–18), the prediction
precisions are mostly higher than 70%, and the hindcast
precision is slightly higher than the forecast precision.
The high prediction precision indicates the first order
approximation model accurately describes year-to-year
variations of the ecosystem regardless of the param-
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Fig. 5. Comparison of predicted year-to-year variations (dashed line) with the first order approximation model (Eq.(32)) to data (solid line)
generated with the nonlinear model (Eq.(26)). The nonlinear model is run under environmental drivers of Eq.(A.2) and with parameters listed
in Table 1as Case 0. All variables are in units of mmol N m−3.

eters used in the simulation model. Furthermore, the
minimization, Eq.(31), is robust, sincec does not vary
significantly given large perturbations in the simulation
model (Table 2), which is in contrast to parameter es-
timation in complex ecosystem models (Vallino, 2000;
Fennel et al., 2001). The reasons for this robustness are
a result of applying scaled (dimensionless) variables
and use of a linear model.

4.2. Prediction capability against environmental
driving

We examine two experiments to test the prediction
capability of the first order model against changes in
environmental driving. First, we change the form of
the annual mean component of the environmental driv-
ing function from periodic to monotonically increas-
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Fig. 6. Comparison of predicted year-to-year variations (dashed line) with the first order approximation model (Eq.(32) to data (solid line)
generated with the nonlinear model (Eq.(26)). The nonlinear model is run under environmental drivers of Eq.(A.3) and with parameters listed
in Table 1as Case 0. All variables are in units of mmol N m−3.

ing T or decreasingL function, which is more con-
sistent with a global change scenario, given by Eq.
(A.2) (Appendix A). For the first 40 years, we use
the same environmental drivers as before, Eq.(A.1)
(Appendix A), and use the same parameter vector,c,
as in Case 0, but refer to simulation as Case 19. Results
show (Fig. 5, Table 2) that the first order model read-
ily handles the change in driver form. For the second

test, we increase the amplitude of year-to-year varia-
tions of environmental driving. We repeat the exper-
iment of Case 0 again with the driving function for
second 40 years, given by Eq.(A.3) (Appendix A).
The results show some decrease in prediction preci-
sion (Table 2as Case 20), but the first order approxi-
mation model still produces a very respectable forecast
(Fig. 6).
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Fig. 7. Comparison of predicted year-to-year variations (dashed line) with the first order approximation model (Eq.(B.2)) to data (solid line),
which is generated with the nonlinear model (Eq.(26)) and added a random error (Eq.(34)). The nonlinear model is run under environmental
drivers of Eq.(A.1) and with parameters listed inTable 1as Case 0. All variables are in units of mmol N m−3.

We conducted several experiments similar to the two
cases above, with similar results (data not presented).
It appears that the form of driving function does not in-
fluence the prediction precision, but increasing the am-
plitude of the annual mean environmental driving vari-
ations does. If the environmental driver amplitude is
higher than it is during the parameter calibration phase,
then the prediction precision of the forecast is reduced.

4.3. Model performance with observation error

In the above simulations, we have employed noise-
free data. In any real application, the model must per-
form accurately in the presence of observation errors.
In order to test the model performance with data noise,
we added a random error with amplitude of 30% of the
long-term mean value to the generated data set. The
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Fig. 8. Comparison of predicted year-to-year variations (dashed line) with the first order approximation model (Eq.(B.2)) to data (solid line)
generated with the nonlinear model (Eq.(26)). The nonlinear model is run under environmental drivers of Eq.(A.1) and with parameters listed
in Table 1as Case 0. All variables are in units of mmol N m−3.

generation of data noise is given by,

Ñ(i) = N(i) + 30%· ¯̄N · η(i)
P̃(i) = P(i) + 30%· ¯̄P · η(i)
Z̃(i) = Z(i) + 30%· ¯̄Z · η(i)
D̃(i) = D(i) + 10%· ¯̄D · η(i)
T̃ (i) = T (i) + 30%· ¯̄T · η(i)
L̃(i) = L(i) + 30%· ¯̄L · η(i).

(34)

where N(i), P(i), Z(i), D(i), T(i), and L(i) stand for
the values ofN, P, Z, D, T, and L collected atith
time, respectively, and̃N(i), P̃(i), Z̃(i), D̃(i), T̃ (i), and
L̃(i) stand for the data added with noise. The function
η(i) generates a uniformly distributed random number
η for each timei, whereη ∈ (0,1). Although predic-
tion precision of both hindcast and forecast decrease
(Table 2, Case 21), the prediction largely matches the
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data (Fig. 7), which indicates the model is able to ac-
curately assimilate noisy data. However, the addition
of noise does cause a significant change in the first
order model parameter vector,c (Table 2, Case 21 ver-
sus Case 0); it should be noted that the parameters
are now fitted to the data + noise rather than the data
alone.

4.4. First order approximation with less
knowledge

The first order approximationNPZD model, Eq.
(28), was developed according to the known flux
expressions, Eq.(27), used to generate the simu-
lated observations. Typically, such knowledge is un-
available; however, it is not necessary to have such
detailed information to develop a useful first order
model. To illustrate this robustness, we assume we
only know the basic food web connectivity (Fig. 1)
and employ basic reasoning to establish relation-
ships between processes (i.e., fluxes) among the state
and environmental drivers. We may get a more gen-
eral first order approximation to year-to-year fluxes,
similar to Eq. (28), with only the following differ-
ences,

f ′
3 = c32N

′ + c33P
′ + c35

¯̄P
¯̄T
T ′ + c36

¯̄P
¯̄I
I ′

f ′
5 = c54D

′ + c55

¯̄D
T ′.

(35)

e
r
c
e

l
f the
p pa-
r
u not
p
(
s
m e-
t n-
n ch
t gin

Table 3
Comparison of the two first order approximation models.Case 22 is
the model run of the more general model (Eqs. (B.1) and (B.2)) and
Case 0 is the model run of the model given by Eqs. (30) and (32)

Case 22 Case 0

C11 −0.64 −0.39
C12 0.28 0.29
C13 0.02 0.005
C14 0.001 0.003
C21 −0.34 −0.34
C22 0.05 0.05
C23 0.01 0.01
C31 −0.09 None
C32 −0.37 −0.34
C33 0.001 None
C34 −0.001 None
C41 −0.18 −0.18
C42 −0.01 −0.01
C43 −0.04 −0.03
C51 −0.34 −0.33
C52 0.000 None
E1 (%) 80 76
E2 (%) 76 73

C11, C12, C13, C14, C21, C22, C23, C31, C32, C33, C34, C41, C42, C43,
C51, andC52, are the first order approximation model parameters.E1,
E2 are the hindcast and forecast precisions. ‘none’ means the model
does not use this parameter.

with a model that has high connectivity, then remove
those connections that have small parameter coeffi-
cients following data assimilation. Of course, if the
model lacks sufficient degrees of freedom, it will not
be able to simulate the real system accurately. The
technique demonstrated here can readably be extended
to higher order approximations for ecosystems that
exhibit highly nonlinear response to environmental
drivers.

5. Conclusion

We have developed a modeling approach that ex-
tends standard inverse modeling by using lineariza-
tion, dimensional analysis, and time scale separation.
This model is particularly targeted to forecasting long-
term ecosystem dynamics that are largely governed
by changes in environmental drivers. The model de-
velopment is demonstrated with output from a simu-
latedNPZD model. The approach is robust and cap-
tures year-to-year variations in the simulated ecosys-
¯̄T

Similar to Eqs.(30) and (32), we can formulate an
quation set (Eq.(A.1), Appendix A) about model pa-
ameters,c11, c12, c15, c16, c22, c23, c25, c31, c32, c35,
36, c42, c43, c45, c54, andc55, as well as a prediction
quation (Eq.(A.2), Appendix A).

As the results indicate (Fig. 8), the change in mode
orm does not decrease model performance, and
arameter values recovered are similar, where com
able, to those obtained in Case 0 (Table 3). In partic-
lar, parameters associated with flows that were
resent in the original simulation model, Eq.(27),
namely, c31, c35, c36, and c55 of Eq. (35)) have
mall or zero values (Table 3), which indicates the
odeling approach is capable of discriminating b

ween flow diagrams with differing degrees of co
ectivity. This example illustrates a possible approa

o model development. It may be desirable to be
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tem. In case runs, this approach shows the following
strengths: (1) the sensitivity of model parameters is
relatively small, due to adoption of nondimensional-
ization; (2) the model tolerates a high signal-to-noise
ratio in the data used to calibrate the model; (3) less
knowledge on flux expressions for the food web is nec-
essary in the first order approximation model. Case runs
discovered, however, that the prediction precision is
lower when the environmental driver amplitudes are
higher than that under which the model is calibrated.
The technique demonstrated here can be extended to
higher order approximations if necessary.
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Appendix A. Environmental drivers

Environmental drivers are expressed with notations
θ standing for time (day),T for temperature (◦C) andL
for light (Einsteins) as followings,

if θ ≤ 40× 365;

T = 10+ 8sin

(
360θ

365
− 90

)
+ 3sin

(
360θ

10× 365

)

L = 100+ 80sin

(
360θ

365
− 60

)
+ 30sin

(
360θ

15× 365

)

if 40× 365< θ ≤ 80× 365;

T = 10+ 8sin

(
360θ

365
− 90

)
+ 3sin

(
360θ

3 × 365
− 180

)

L = 100+ 80sin

(
360θ

365
− 60

)
+ 30sin

(
360θ

4 × 365
+ 120

)
,

(A.1)

if 40× 365< θ ≤ 80× 365;

T = 10+ 8sin

(
360θ

365
− 90

)
+ 3

(
θ − 60× 365

)3

(
360θ

365

80×
60θ

365
−

(
360θ

365
− 60 + 45sin

4 × 365
+ 120
L = 100+ 80sin

if 40× 365< θ ≤

T = 10+ 8sin

(
3

L = 100+ 80sin
A
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20× 365

− 60

)
− 30

(
θ − 60× 365
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)2

,

(A.2)

365;

90

)
+ 4.5sin

(
360θ

3 × 365
− 180

)
) (

360θ
) . (A.3)
ppendix B. A more general first order
pproximation model

The equation governing the parameters of the first
rder approximation,
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−N ′ −P ′ −
¯̄N
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=
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Z′
D′


 (B.1)

The first order approximation prediction equation
with unknownsN′, P′, Z′, andD′,


1 + c11 c12 0 −c54
−c11 + c31 1 − c12 + c22 + c32 c23 0

0 −c22 + c42 1 − c23 + c43 0
c31 −c32 − c42 −c43 1 + c54
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