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Abstract

Ecosystems exhibit nonlinear dynamics that are often difficult to capture in models. Consequently, linearization is commonly
applied to remove some of the uncertainties associated with the nonlinear terms. However, since the true model is unknown and
the operating point to linearize the model about is uncertain, developing linear ecosystems models is non-trivial. To develop a
linear ecosystem model, we assume that the annual mean state of an ecosystem is a minor bias from the long-term mean state. /
first order approximation inverse model to govern the year-to-year dynamics of ecosystems whose characteristic time scales are
less than 1 year is developed, through theoretically formulation, on the basis of steady state analysis, time scale separation and
nondimensionalization. The approach is adept at predicting year-to-year variations and to tracking system response to changes
in environmental drivers when compared to data generated with a standard noNRz#amodel.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction term response of the organism to its environment. For
example, the temperature—photosynthesis relationship,
One of the primary goals of ecology is to understand Q(lg—m)/lo (Eppley, 1972, the light-photosynthesis
the response of an ecosystem to changes in environ-relationship, {/1o) exp(1— (I/1o)) (Steel, 196% the
mental drivers. The realization of this goal is that one Michaelis—Menten functiony/(N + K), are all instan-
can predict the ecosystem’s variation to environmen- taneous functions with respect to environmental vari-
tal drivers once an appropriate model has been devel-ables of temperaturg, light intensity/, and limiting
oped. The basis of model development is mathemat- nutrient concentratiow, respectively. However, the
ically approximating the instantaneous and/or short- practical concern in environmental ecology is often
the year-to-year variations and/or long-term variations
"+ Corresponding author. Tel.: +86 592 218 2811: rather than short—tgrm ones. For gxample, annual yield
fax: +86 592 218 0655. in fishery ecology is the scale of interest, not instanta-
E-mail address: zwan@xmu.edu.cn (Z. Wan). neous or daily yield.

0304-3800/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2005.02.003



370 Z. Wan, J. Vallino / Ecological Modelling 187 (2005) 369-388

There are two major challenges to develop a model to describe the year-to-year dynamics of an ecosystem
based onthe rules governing the instantaneous biology-in which nutrient and organismal concentrations are
environment interactions. First, one needs to supply annual averaged. An inverse method is used to esti-
information that describes the short-term changes in mate model parameters. A typidéPZD compartment
environmental drivers; however, it is difficult to obtain model is used to generate simulated observations and
accurate predictions on the dynamics of environmen- test the first order approximation model. A forecast ex-
tal drivers very far into the future, which is necessary perimentis carried out to test the predictive capability
for daily/seasonal ecological model simulations. Gen- of this model.
erally, long-term trends are less difficult to obtain, such
as annual average temperature 50 years into the future.

Second, short-term tends are more difficult to under- 2. Model formulation

stand and explain than long-term trends. Consider fish-

ery yield. A daily yield hardly makes sense. Daily vari- 2.1. A steady state analysis

ation has a far larger range than that of the annual mean

daily yield. Models used to describe short-termdynam-  Although steady state analysis applied to ecosys-
ics require more state variables and more parameterstems has an extensive and controversial history
for each state equation than models used to describe(Nilsson and Grelsson, 1993he qualitative concepts
annual mean variations. will be useful for our model development and should

If instead, the modeling focus is placed on long- notbe interpreted in a strict mathematical sense. A ma-
term trends, then the above two challenges can beture ecosystem can be thought of as being in a steady
mitigated. However, the rules that govern the long- state or, if inherently chaotic, in low amplitude os-
term mean response cannot be derived from the rulescillations about an attractor. This steady state allows
that govern short-term dynamics. For instance, it has for diel and annual fluctuations, but the ecosystem’s
been shown that calculating long-term expected val- description necessarily takes place at some averaged
ues of temperature dependent functions can seldom belevel. Given a permanent alteration of the ecosystem
achieved by applying the functions to mean temper- drivers, it will settle on a new steady state, again in
ature (ischke et al., 199)% because temperature de- some spatially and temporally averaged senag ¢en
pendencies are often nonlinear. Short-term rules are Berg, 1998. What do we consider a mature ecosys-
developed through short-term experiments and/or ob- tem? What alterations may be considered as perma-
servations. It is possible to do the same for long-term nent? We tentatively assume that an ecosystem remains
rules provided long-term experiments and/or observa- at steady state, once the environmental drivers are con-
tions are available. If data are available, inverse meth- stant with respect to a given temporal scale. When
ods can be used to estimate flows between compart-the surroundings change to a new value, the ecosys-
ments Yézina and Platt, 1998however, flow anal-  tem will transfer to a new steady state after a certain
ysis models cannot be used for prediction. Although transient time. The transient time required to reach a
standard state space models can be used for predichew steady state is on the order of the doubling time
tion, almost all of the models developed thus far fo- of the slowest growing organism. For example, in a
cus on short-term dynamics and are not applicable planktonic ecosystem, the response time is less than 1
to long-term behavior. The main contribution of this month.
manuscript is to combine flow analysis with first or- For model development purposes, we will consider a
der approximations of process rates to predict ecosys- plankton ecosystem composed of four compartments:
tem annual dynamics. Consequently, our approach al- nutrient N, phytoplanktonP, zooplanktonZ and de-
lows the long-term response of an ecosystem to be tritus D with mass flow connectivity as illustrated in
predictable from the long-term mean environmental Fig. 1L We assume that under the long-term averaged
drivers. surroundings of temperatufeand lightL, this system

In brief, steady state analysis, linearization, time attains a steady state (SS) with stoeksP, Z, D, and
scale separation, and dimensional analysis are em-fluxes fq, f», f3, f4 and fs. According to the mass
ployed to formulate a first order approximation model flow connectivity Fig. 1), the following conservation
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Fig. 1. Food web of a typical marine plankton ecosystem madel.
P, Z, andD stand for concentrations of dissolve inorganic nutrient,
phytoplankton, zooplankton and detritus, respectively.

equations exist under SS conditions,

f5—f1—

fl_fZ_f3— )
fz—f4—_

fa+ fa—fs=0.
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stock isx and the flux is?, so Eq.(1) can be written
as,

Af=0. (4)
We assign definitions of, ¢ and f for the second
SSsimilar tax, e and f for the first SS. The approxima-

tion of the system dynamics during the transient period
between two steady states may be expressed as,
~ X—X

AF =" ©)

Where}” stands for the average flux vector during the
transient period.

Linearization is a common mathematical approach.
However, choosing the appropriate operating point to
linearize around can be challenging, since the lin-
ear model approximates the true system only in the
neighborhood of the chosen operating point. Lineariza-
tion is uncommon in ecological modeling, although
there are applications in flow estimation and sensitiv-
ity analysis Kooi et al., 2002; Kbhler and Wirtz, 2002;
Diffendorfer et al., 2001; van den Berg, 1998 SS
may be an ideal operating point for linearization about.

Once the surroundings change to a new state with Thus, a Taylor expansion gfaboutx ande, evaluated

temperaturel’ and lightZ, the system reaches a new
SS with stocksv, P, Z and D and quxesfl, f2, f3,

f4 andf5 During the transient period9, this system
may be approximated with fixed fluxes, fo, fa, fa

and f5 and constant state change,

2|
Zn

fo—f1= Ao _
FRy P N et
1—J2—J3=
= A0 @
Z—Z
fo—fa=""2 A0
D—D
fa+ fa—fs= Y

We now place the above example in general form.

Definex as the ecosystem state veciwthe environ-
mental driver vectoyf the flux vector and as the ma-
trix which represents the food web connectivity. The

atx ande, keeping only the first order terms, gives an
approximation foyf,
Z ., of
Fer+ ) @4 (6)
x 8e
For simplicity, we define matrixe8; andG. in the
following expression,

_(e-9

x,e

xe

d
G, = l
wisd )
aof
G, =L
de Ye

Therefore, Eq(5), with application of Eq(4), can
be rewritten as,

Y—
o (8)

Eq.(8)is a first order approximation model derived

=

A(G1(x —x) + Ga(e — @) =

dynamics of this ecosystem can then be expressed as,from a steady state analysis combined with lineariza-

dx

= Afxe) 3

whereé is the time, ang’ depends ox ande. With
respect to the first SS, the environmental driver, the

tion, but the representation of time scale is unclear.
Since Eq(5) represents the transient response, the va-
lidity of the linearization, Eq(6), is time scale depen-
dent. It may literally represent an evenly transforming
process from one steady state to another, but may not
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be applicable to all SS transitions. The following time  x”(n A6, §t) = x(9) — x(nAb)
scale analysis will explain the meaning of the evenly ¢”(nA#, 5t) = e(6) — e(nA6) (12)
transforming process from the long-term mean state to f”(nA#, 1) = f(0) — f(nA9),
the annual mean state. .

and the annual mean biases from the long-term mean,
2.2. Time scale separation x'(nA0) = x(nA6) —_)?

e'(nAb) =e(nAd) —e _ (13)

Choice of the appropriate time scale is also animport f'(nA8) = f(nAbd) — f.

consideration for model development. Time scale sep-
aration is quite common in geophysics. For example,
hydrodynamic time scales are classified as circulation,
tidal current and turbulent current in oceanography. x(6) = x + x'(nA6) + x" (n A6, 56)
Time scale concepts have been recognized in ecology e(d) = e + €/ (nA6) + €’ (n A9, 56) . (14)
recently. Although different time scales were assumed f(6) = f + f'(nA8) + f(n A8, 56)
in the trophic levels b¥ooi et al. (1998)no complete
time scale separation was carried out. Similarly, differ-
ent methods were used for hourly, daily, and monthly
temperatures to describe the temperature dependenq}erms’
of an ecosystemL{schke et al., 199/ We associate  f(6) = f(x, e)
the primary SS with a long-term mean state of a pris- of
tine ecosystem and the secondary SS with the annual = fo+ —

According to the above definitions(0), e(0), and
f(6) can be expressed as,

We approximate the flux functigff) = f(x,e) about
an arbitrary point,Xp,eo), keeping only the first order

(x — x0) + g (e — ep).

mean state. We formulate the first order approximation 0% |xo.e0 9€ | 0,60 (15)
model through time scale separation in the following
context. We use the time scale representationsarfide, EqQ.
We define the long-term mean valuescpé, andyf, (14), to get,
which are time dependent as,
f(0) = f(x.e)
_ +00
X = 9 -
x /_ _ XO@ ~ for | F K (180) + ¥ (006, 86) — x0)
_ +00 ox X0,€0
e= / e(0)do . 9) af B
_ T +— (e + € (nAD) + &’ (n A, 56) — ep).
f= f(6)de e (16)
—00
We express timé by two scales, Once we separaj0) into its time scale represen-
6= nAG+ 56, (10) tation, Eq.(14), we have,
' (nAB) = G1x' (nAB) + Goe' (nAB)

wheren stand; for year numbe@@ for 1 year anoS_@ F(n A6, 86) = G1x" (A6, 86) + Goe' (n A6, 56).
for seasonal time, whose maximum increment is less (17)
thanA6. We define annual mean values,

1062 When we integrate E@3) from timefg to timed, as-
x(nAf) = / x(n A6 + 56) dso sumingd — 6p = A6, using the time separated variables

—A0/2 (Eg. (14)), we obtain,
_ +A0/2 N
e(nAp) = / , e(n A6 + 50) dso (11) x + X' (nA) + x""(nA6, 56)

—A6/
_ +06)2 o =, .
Finad) / Fn6 + 56)do6 =x(00)+ | 4 (f + f(nA0) + f(nA6, 59))

—AG/2 0

the seasonal variations, x déo (18)
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Since the initial conditions(6p), are typically not The basic ecosystem dimensions aik [x], and [e]
well known and their influence on the current state for 6, x ande, respectively. AlthouglG,, andG, are
rapidly decays with time, we can sefdp) equal to defined by Eq(7), we can consider them as unknown
the long-term meany, with little loss of generality. model parameters that have the following units,
Thus, we can transform E¢18) into the following

form, [Ga] = [0] "

P (23)
X' (nA6) + x" (n A6, 50) [G2] = [0] H{x][e] .

= 56 . . - i .
— AOAS + A@Af’(nA9)+/ Dimensionless coefficients have wide generality

SO—A and enable cross-site usgt¢phen and Dunbar, 1993
UsingAd, x, ande as critical variables with dimensions
x dso. (29)
[6], [x], and [e], we can replace the model parameters
G1, Go with dimensionless coefficients,, Co,
We separate the time scales, which gives us the fol-
lowing two equations, C1=G1A0

Af"(n A6, 56)
6

80 C2 = Ger.?_lz (24)
x"(nAb, 56) = / A f"(nA8, 56) dso (20)
86—A0
, = , 2.4. The first order approximation inverse model
xX'(nAB) = AGA f + ABA f'(nA6). (21)
With substitution of Eqs(4) and (17)into Eq.(21), With substitution of Eq(24)into Eq.(22)we obtain,
we obtain,

X' (nA6) = AOA f'(nA6) X' (nA0) = MDA f'(nA6) )

= AOA(G1x' (nA6) + Goe' (nAB)).  (22) =A (Clx/(”Ae) + Cz)eie/(nAe)> . (25)

Eq. (22)is similar to Eq.(8), but is specific for the which is the first order approximation model for year-

annual mean bias from the long-term mean, which is t0-year dynamics, and forms the basis for all subse-
the time scale of interest. quent development. Since one can introduce different

critical variables, this model may have different forms
of rescaled dimensionless variables. This model equa-
tion is linear, but implicit. The model parameter's,

Dimensional analysis transforms the variables in a @nd C2 do not have direct biological meanings, but
problem to a reduced set of dimensionless variables. réflect the influence af ande on f'. Consequently,
This transformation helps to reveal the nature of re- the parameters cannot be derived from first principles,
lationships among variables, simplifies modeling, and Put can be determined by inverse methods in a whole
produces predictions that are readily compared across€COSystém context.
species and conditionsS{ephen and Dunbar, 1993
Although most ecosystem models are not based on
dimensionless variables, the convenience of dimen- 3. Application of approximation model to
sionless parameters has been increasingly recognizedmarine foodweb
(Ebert et al., 2001; Wan et al., 2000a; van den Berg,

1998. The application of dimensionless variables is Here we demonstrate application of the first-order
not only convenient to generalize the representation approximation model (Eq25)) to a marine ecosys-
of model parameters, but can also reduce the numbertem. However, to facilitate analysis of our approach,
of model parameters. We introduce the notatigid data will be generated using a standard nonlingD
stand for the dimension of a variable or an expression. model instead of actual observations.

2.3. Dimensional analysis
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3.1. NPZD model According to Egs.(25) and (27) the first order
approximation of year-to-year flux variations may be
We use a standard marine plankton modtég( 1) written as,
to generate simulated observations that are governed 5 v
by the following differential equationsWan et al., £l =cuN' + c12P' + c15=T + c16=1I'
20008, T T
dp I I N P
— = 10,220 exp( 1 ) P Jo = caaP' o casl! Fcos T (28)
d[ Io 10 N + KN 7 i
P f3=c32P _
0.17—1.0 Z
—mpP = q10:2 P—i—KpZ fa= C42P’+C432’+C45?T'
P / — /
= B10, 201710 Z—myZ Jg = csaD

P+ K
d where C11, C12, C15, C16, C22, C23, C25, C32, C42,

20‘1T—l~01 exp <1 _ 1) Ca3, Cs5, andCs4 are the coefficients of the first or-
Io Io der approximation to the fluxes. Note that the sym-
bol x’ stands for the annual mean biasxofrom its
long-term mean, as before, and thatis actually a
P function of nA6; however, we drop the dependency
mz —vyD (26) (nA0) for simplicity hereafter. We note here that Eq.
(28) is typically constructed from knowledge about
whereP, Z, N, D, T, and! stand for phytoplankton, the ecosystem under study, and not from a preexist-
zooplankton, nutrients, detritus, water temperature and ing model, as in this example. Substituting E&8)
solar intensity, respectively. The model parameters are into Eq. (25) and notingA8=1 year, the first order
described iriTable 1 approximation model for the NPZD marine ecosystem
In this simplified model, phytoplankton respiration becomes,
is accounted for by reducing their specific growth rate.

dz
dr
dN
E = —q10p

dD
P+yD— =mpP+mzZ

X —— =
N+ Ky dr

+(1— 10,2011

!
Both mortality rates of phytoplankton and zooplankton N , _11 01 01 8 (:)L
are assumed proportional to compartment concentra- 2 1=1 0 _1 _0 1 0
tion. A fixed fraction of total zooplankton consump- 5% o 0 1 1 -1
tion is allocated to growth while the rest contributes to B B
detritus production. A constant detritus decomposition ) ! N , N ,
rate is used. c11N +c12P +6157T + 61671
P
3.2. A first order approximation model for the c22P' + 237" + 625? T’
NPZD ecosystem X 3P’ _ ,
Z
Eq.(25)is used to approximate the flux expressions. ca2P’ + ca3Z' + ca5=T'
There are five fluxes in the simulated food wey( 1), csaD! r
which are given by, (29)
0.17-1.0 I 1 N ! pl o7 / !
f1=q0p27 T mexp( 1= - yrrol whereN', P', Z', andD’ are the unknowns arfll, I’ are
© p ° N the environmental drivers.
fo= qlozzo.lel.O 7z
P+ Kp 27
fa=mpP 3.3. Inverse method
_ 0.17—1.0 ] ]
fa=(1-p)q10.2 Pr KPZ +mzZ An inverse method is used to solve for the model

fs=vyD parameters(Ci1, C12, Cis, C16, C22, C23, C25, Ca2,
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Table 1

Parameters of the nonline&iPZD model wherey1g, stands for the growth rate of phytoplankton aP @)1, is the optimum solar radiatiok,y
is the half saturation constant fruptake byP, m,, is the mortality rate of phytoplankton; . is the predation rate of zooplankton at’1D) g
is the assimilation efficiency of zooplankton, is the mortality rate of zooplankto,, is the half saturation constant fBruptake by Z ang/
is the decomposition rate of detritus

Symbol 9 Io Ky

Case 0 2.0 100 0.5
Case 1 2.4 S S
Case 2 1.8 S S
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10
Case 11
Case 12
Case 13
Case 14
Case 15
Case 16
Case 17
Case 18
Unit D! Einsteins mmol Nm?3

3
™
&
=
<

q10;

o
a
o
IS
o
i
o
o
o
]

(0]
o
N

NOOLOLOHONHnOONnNnnnmonmnno -
w
N O

o
o N
o o,
o1 o
NLLOLONHONOLOLONNOnONnOOOn o

NOLOLOLOHOHONnONnNDSoOoLNHNnLnMO
NUNOSSCLLOLUOLOLOLOOOOOnOo

N O ]
NOLOLOLNHNNDSOoONOLOLLOLNOOOnOO

NOLOLOHOHOLOOONNnOnnnmunon
NOLOLOLOSFRPNLOLONLOOLOLOONOOON

(/)(D(/)(D(/)U)(/)U)(/)U)(/J(l)g
.‘_.(/)(D(/)(D(/)U)(/)U)_O!—‘(/)U)(/JU)(/JU)(/JU)!—\

mmol Nm—3 D!

@)
IR
@)
I
9
IR

S stands for the value same as in Case 0.

Cu2, Ca3, C45, andCsa. EQ.(29) can be convertedtoa  sufficientobservations, this equation may become over-
set of equations with respect to the model parameters,determined and yield a unique solution. We introduce
as shown here

C11
C12
C15
C16
T —-P 0 0 0 0 €22
€23
€25
T 0 €32
c42
€43
45
C54

~
o
o
o
o
o
o
o
S|

-N —-p —

N/ P/

~
|
)
|
N
|
N~

o
o
o
o
!
N
N ol

N
o
|

<
|

N
|

o
o
o
o
o
o
o
~
~
N

= . (30)

This set of equations has more unknowns than equa-A(n) andb(n) to stand for the matrix on the left hand
tions, thusitis under-determined; however, Bf)can side of Eq(30)and the vector on the right hand side at
be applied to each year data is available. Once there areyearn, respectively, and for the vector of unknowns.
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A least-squares objective function can written as,

N
J=) (A~ bm)?. (31)

n=1
where the vector of model parametarsgan be deter-
mined through minimizing.

3.4. Prediction

After ¢ is determined, E29) may be regarded as
an equation set with respect to unknowisP’, Z', and
D', as given by

1+c11 c12 0 —C54
—c11 l—ci2+coo+c3 €23 0
0 —c22+ c42 1—co3+c43 0
0 —C32 — C42 —C43 1+ css

The vector on the right hand side represents envi-

Z. Wan, J. Vallino / Ecological Modelling 187 (2005) 369-388

both temperature and light have far less year-to-year
variation than in the first 40 years. The purpose is to
generate different year-to-year variations. Data gener-
ated in the first 40 years will be used for parameter
estimation in the first order approximation model, and
the data collected then after will be used to test the
predictive capability of the model.

The initial conditions for th&vPZD model are 1.0,
0.5, 0.2, and 3.0 mmol N? for N, P, Z, andD, re-
spectively. A simple Euler difference scheme is used
to integrate the model equations (E6)). The time
step is 0.1 h, and the model runs for 80 years. Values

N / N !
—c15=T" —c16=1
T

N P\, N,
c15= —c5= | T"+c16=1
T T 1

N7
pPr| _ _
zZr |~ P zZ T
C25= — C45=
Dy T T
zZ.,
cas5=T
T

(32)

ronmental forces. The matrix on the left hand side con- ©f N, P, Z, D, T, and! are output 10 times per year to

sists of components of vecterand maps year-to-year
variations in the environmental driving to year-to-year
variations in the ecosystem.

3.5. Data generation

develop annual mean data sEig. 2).

3.6. Parameter estimation

The data set collected in the first 40 years is
used to estimate the model parameter vector Eq.

To remove problems associated with data gaps, er- (30). As Eq. (30) is linear, the minimization of/,
rors in measurements, and mismatches between modeEgq. (31), may be achieved through solving an over-

variables and actual observations, we run M&D

determined linear equation set under a least-squares

model mentioned above to generate data. The environ-constraint. The solution vecteris listed inTable 2as

mental drivers required for model simulation include

water temperature and solar radiation just below the

Case 0.
In order to examine how well the first order model

water surface. We assume the water depth is shallow approximates the observed (simulated) system, we
and both temperature and light are even. We use Eq.compare predicted annual mean biage® observed

(A.1) (Appendix A) to generate temperature and light.

Both temperature and light include a long-term mean,

(simulated) annual mean biases as follows. Wease
along with the observed values #f, x, ¢/, ande to

a year-to-year variation and a seasonal variation. The estimatex’ via Eq. (29). This may appear to be cir-
temperature has a long-term variation with a period of cular reasoning, but inspection of H80) (or 31) re-

10 years in the first 40 years and the light is similarly
driven with a period of 15 years. In the next 40 years,

veals an important aspect in estimatingBecauser’
appears on both sides of HQO0), the value ofc that
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Fig. 2. Data generated with t?&°ZD model. The thin line stands for the seasonal dynamics and the thick line stands for annualNn&ans.
Z, andD are concentrations of dissolve inorganic nutrient, phytoplankton, zooplankton and detritus, respectively. All variables are in units of

mmol N m3.

minimizes Eq(31)need not produce a model that con-

cedure, we obtain information on how well the first

serves mass. Only when the first order model accurately order model approximates the real system. In the sim-
represents the true system is mass conserved and thellated NPZD system, we see that the first order ap-

equality of Eq.(30) met. If mass conservation is sig-
nificantly violated, then the predictad will not com-
pare well to the observed. Hence, by relaxing the

mass conservation constraint in the minimization pro-

proximation, Eq(29), is a good representation of the
actual nonlinear systenfig. 3). If the model fit to
observations were poor, it would be necessary to re-
formulate the first order model, ER9), using differ-
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Table 2
Parameters of the first order approximation model and prediction precisions, wherg & C13, C14, C21, C22, C23, C31, Ca1, Ca2, C43, and
Csy, are the first order approximation model parameters

Case Cu1 Ci2 Ci3 C1a Ca1 Cz  Ca3 Ca1 Ca1 Ca2 Ca3 Cs1 E1 (%) E2 (%)
0 —-0.39 029 0005 Q003 -0.34 005 001 -034 -018 -001 -003 -0.33 76 73
1 —0.39 028 0.008 Q003 -0.35 004 001 -035 -0.18 -0.01 -003 -0.33 85 76
2 —-0.39 029 0007 Q003 -0.34 Q05 000 -034 -018 -001 -003 -034 59 61
3 —0.40 029 0004 Q002 -0.34 006 000 -033 -0.18 000 -0.03 -0.34 60 62
4 -0.39 028 0006 Q003 -0.35 003 001 -035 -019 -002 -003 -033 85 75
5 —0.39 029 0.000 Q003 -0.34 004 000 -035 -0.18 -0.01 -004 -0.34 75 69
6 —0.40 029 -0.01 0003 -0.34 Q05 001 -034 -018 -001 -003 -034 65 65
7 -0.12 045 0020 Q004 -0.48 003 005 -0.04 -0.04 003 010 -0.82 83 77
8 -0.61 028 0010 Q003 -0.27 036 -0.08 -043 -024 -015 -006 -0.29 89 82
9 —0.40 031 -0.01 0003 -0.33 006 -002 -034 -0.17 -000 -0.04 -0.34 89 82

10 —-0.43 028 0009 Q003 -0.35 011 -0.07 -034 -018 -0.08 011 -0.34 83 74

11 —0.30 044 -0.01 0003 -0.34 016 -0.03 -0.17 -0.10 008 -0.03 -0.57 80 78

12 -0.51 027 0006 Q004 -0.30 028 004 -037 -022 -0.19 012 -0.32 87 79

13 -0.41 028 0020 Q003 -0.35 005 001 -035 -0.18 -0.02 001 -0.33 89 84

14 -045 035 0009 Q009 -0.31 013 -0.06 -031 -0.16 003 -0.10 -0.38 85 80

15 -0.31 044 0.005 Q009 -0.33 018 -0.04 -0.18 -0.11 004 -0.03 -0.57 84 82

16 -044 027 0004 Q003 -0.32 012 -002 -038 -020 -006 -001 -031 91 83

17 -0.41 030 0.009 Q003 -0.34 007 -001 -033 -0.18 -0.03 -0.01 -0.34 84 83

18 -0.37 028 0008 Q003 -0.33 012 -0.05 -036 -020 -0.10 004 -0.33 86 77

19 —-0.39 029 0.005 Q003 -0.34 005 001 -034 -0.18 -0.01 -003 -0.33 76 83

20 -0.39 029 0005 Q003 -0.34 005 001 -034 -018 -0.01 -0.03 -0.33 76 52

21 —-0.42 033 -0.09 001 —-0.33 041 002 -016 -0.16 -0.20 057 -051 80 73

Ej, E; are the hindcast and forecast precisions. Case 0 is referred as the reference run, Cases 1-18 as the parameter sensitivity runs, Cases
and 20 as different environmental driving runs and Case 21 as the observation error run.

ent dependencies and perhaps different compartmentprecision as,

connectivity.
4 40 | =x/: =
1 1/40% 524 X5 () — X
. €1-40=100| 1— - 20 )
3.7. Hindcast and forecast 4 =1 ma1x|fj(i) -5l
i=

The objective of the first order approximation model 4 80— _
is to predict year-to-year variations of an ecosystem 1 = 1/40% 0244 1x530) — X
from the annual mean values of the environmental 480~ 1001 1-7 Z 40 _ o =
drivers,e’, (T"_and/  in _this example), the long-term =1 rln:alx|xj(z) — %l

mean values ande (P, Z, T, andI here), and the (33)
vectorc according to the prediction formulation (Eq.
(32)). wheree;_gostands for the hindcast precisiea; _ggfor

For the simulated system, we run the prediction the forecast precision, ang, x5, x3, andx} for N, P, Z,
over 80 years, where the first 40 years may be con- andD, respectively. For the model fit based on the first
sidered as the hindcast period, and the next 40 years40 years of datag;—40 andes1-gp equal 76 and 73%,
as the forecast period. The comparison of the pre- respectively {able 2 Case 0). This error analysis indi-
dicted year-to-year variations against the data is shown cates that the model fits the observations well, based on
in Fig. 4 The predicted variations match the data hindcast results, and that the model forecast does not
well in terms of both pattern and amplitude. To quan- degrade even when environmental drivers differ from
tify model fit, we define the total mean prediction those used to calibrate the model.
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Fig. 3. Comparison of the first order approximation (solid line) with data (diamond) during following data assimilation iadgsd (31)
Note, because of the implicit nature of Eg0), mass need not be conserved. All variables are in units of mmoti m

4. Model analysis and discussion
4.1. Parameter sensitivity

The vectore contains the parameters of the first or-
der approximation model, but the valuecafepends on
the parameters of the simulation, or true, model (Eq.
(26), Table 1. Changes of the simulation model pa-

rameters represent different ecosystems that have sim-
ilar structures and connections, but perhaps different
species. We want to examine how the first order model
responds, both in accuracy of fit and value: pfo pa-
rameter changes in the simulated model, ). To
accomplish this, we changed one parameter value at a
time and ran the NPZD model to regenerate a data set
as we did in Case 0, then examined the fit statistics, Eq.



380 Z. Wan, J. Vallino / Ecological Modelling 187 (2005) 369-388

0.08 —
hindcast forecast

0.07
Z 0.06

0.05

0.04 1 | 1 | 1 | 1 |

1.00 —

0.75

o 0.50

0.25 -

0.00 1 | 1 | | I 1 |

0.20 —

0.05 -

0.00 1 | 1 | 1 | 1 |

4.4 —

4.20

3.80

3.6

Fig. 4. Comparison of predicted year-to-year variations (dashed line) by the first order approximation mo¢&2)Eaass conserving) to
data (solid line) generated with the nonlinear model (26)). The nonlinear model is run under environmental drivers of(Bdl) and with
parameters listed iliable 1as Case 0. All variables are in units of mmol N'¥n

(33), and the newe values obtained from minimizing The estimated values and the prediction precisions
Eg. (31). Parameters in the simulation model were in- for each perturbationl@ble J) are listed inTable 2as
creased or decreased by as much as 10@#d¢ J), but Cases 1-18. In the first 19 cases (0-18), the prediction
we decreased the magnitude of the parameter pertur-precisions are mostly higher than 70%, and the hindcast
bation if the perturbation resulted in an unstable sim- precision is slightly higher than the forecast precision.
ulation. For instance, whepop is increased from 2.0  The high prediction precision indicates the first order
to 4.0, the ecosystem collapses, which is not of interest approximation model accurately describes year-to-year
for the sensitivity analysis. variations of the ecosystem regardless of the param-



Z. Wan, J. Vallino / Ecological Modelling 187 (2005) 369-388 381

0.08 —
hindcast forecast

N
0.05 |-
0.00 ! | ! I ! I ! |
0 20 49 60 80
year
4.4 —

Fig. 5. Comparison of predicted year-to-year variations (dashed line) with the first order approximation mo(&2)gq.data (solid line)
generated with the nonlinear model (EB6)). The nonlinear model is run under environmental drivers of(B) and with parameters listed
in Table 1as Case 0. All variables are in units of mmol N'#n

eters used in the simulation model. Furthermore, the 4.2. Prediction capability against environmental
minimization, Eq(31), is robust, since does notvary  driving

significantly given large perturbations in the simulation

model (Table 2, which is in contrast to parameter es- We examine two experiments to test the prediction
timation in complex ecosystem model&(lino, 2000; capability of the first order model against changes in
Fennel et al., 2001 The reasons for this robustness are environmental driving. First, we change the form of
a result of applying scaled (dimensionless) variables the annual mean component of the environmental driv-
and use of a linear model. ing function from periodic to monotonically increas-
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Fig. 6. Comparison of predicted year-to-year variations (dashed line) with the first order approximation moga2)Exdata (solid line)
generated with the nonlinear model (E86)). The nonlinear model is run under environmental drivers of(B) and with parameters listed

in Table 1as Case 0. All variables are in units of mmol N'¥n

ing T or decreasind. function, which is more con-
sistent with a global change scenario, given by Eq.
(A.2) (Appendix A). For the first 40 years, we use
the same environmental drivers as before, &ql)
(Appendix A), and use the same parameter veator,

test, we increase the amplitude of year-to-year varia-
tions of environmental driving. We repeat the exper-
iment of Case 0 again with the driving function for
second 40 years, given by E(A.3) (Appendix A).

The results show some decrease in prediction preci-

asin Case 0, but refer to simulation as Case 19. Resultssion (Table 2as Case 20), but the first order approxi-

show ig. 5, Table 2 that the first order model read-
ily handles the change in driver form. For the second

mation model still produces a very respectable forecast

(Fig. 6).
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Fig. 7. Comparison of predicted year-to-year variations (dashed line) with the first order approximation mo¢(®If¢p data (solid line),
which is generated with the nonlinear model (E26)) and added a random error (E84)). The nonlinear model is run under environmental
drivers of Eq(A.1) and with parameters listed Fable 1as Case 0. All variables are in units of mmol N'#n

We conducted several experiments similartothetwo 4.3. Model performance with observation error

cases above, with similar results (data not presented).

It appears that the form of driving function does not in- In the above simulations, we have employed noise-
fluence the prediction precision, but increasing the am- free data. In any real application, the model must per-
plitude of the annual mean environmental driving vari- form accurately in the presence of observation errors.
ations does. If the environmental driver amplitude is In order to test the model performance with data noise,
higher than itis during the parameter calibration phase, we added a random error with amplitude of 30% of the
then the prediction precision of the forecast is reduced. long-term mean value to the generated data set. The
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Fig. 8. Comparison of predicted year-to-year variations (dashed line) with the first order approximation mo¢@IQfr¢p data (solid line)
generated with the nonlinear model (E86)). The nonlinear model is run under environmental drivers of(BdL) and with parameters listed
in Table 1as Case 0. All variables are in units of mmol N'#n

generation of data noise is given by,

N(i) = N(i) + 30%-
P(i) = P(i) + 30%-
Z(@) = Z(@i) + 30%-
D(i) = D(i) + 10%-
T(@i) = T(i) + 30%-

31

SNl

(i)

. n({')

)
-n(7)
n(i)

=
~

L(i) = L(@i) + 30%- L - n(i).

(34)

where N(i), P(i), Z(i), D(i), T(i), and L(i) stand for

the values ofN, P, Z, D, T, and L collected atith
time, respectively, and/ (i), P(i), Z(i), D(i), T(i), and

L(i) stand for the data added with noise. The function
n(i) generates a uniformly distributed random number
n for each timei, wheren € (0,1). Although predic-
tion precision of both hindcast and forecast decrease
(Table 2 Case 21), the prediction largely matches the



Z. Wan, J. Vallino / Ecological Modelling 187 (2005) 369-388 385
data Fig. 7), which indicates the model is able to ac- Table 3 _ o _
curately assimilate noisy data. However, the addition ;Ompa(;'slon of tfhtf] two first order I""pprgxl'r(“Ea“O”(é“f)de'st(gSS)zz 'j

. . ] . - € moael run o € more general mode gs. .1)an . an
of noise does cause a significant change in the first Case 0 is the model run of the model given by Egs. (30) and (32)
order model parameter vector(Table 2 Case 21 ver-

sus Case 0); it should be noted that the parameters Case 22 Case0

are now fitted to the data + noise rather than the data €11 —0.64 —0.39

alone Ci2 0.28 029

' Ci3 0.02 0005

Cia 0.001 Q003

4.4. First order approximation with less Ca1 —034 —034

nowledee C2 0.05 005

nowleag Cos 0.01 001

) ) ) C31 —0.09 None

The first order approximatio&vPZD model, Eq. Ca2 -0.37 —-0.34

(28), was developed according to the known flux Css 0.001 None

expressions, Eq(27), used to generate the simu- €34 —0.001 None

. ; : Ca -0.18 -0.18

lated observations. Typically, such knowledge is un- ” —001 —001

avail'able;' howevgr, it is not necessary to have such ¢,, —0.04 003

detailed information to develop a useful first order cs; —-0.34 -0.33

model. To illustrate this robustness, we assume we Cs2 0.000 None
only know the basic food web connectivitfig. 1) E1 (%) 80 76
E> (%) 76 73

and employ basic reasoning to establish relation-
ships between processes (i.e., fluxes) among the state 11 €12 C13, C14, C21, C22, C23, C1, C32, C33, C34, Can, Caz, Ca,

. . Cs1, andCsp, are the first order approximation model parametéys.
and e_nVIronmental d”\_/ers'_ We may get a more gen- E» are the hindcast and forecast precisions. ‘none’ means the model
eral first order approximation to year-to-year fluxes, qoes not use this parameter.
similar to Eq.(28), with only the following differ-
ences,

with a model that has high connectivity, then remove

/ 4 / F / F /
fa=c32N"+c33P + c35=T" + c36=1
B T 1 (35)

f5/ = C54D/ + C557T/

Similar to Eqs.(30) and (32)we can formulate an
equation set (EqA.1), Appendix A about model pa-
rameterscii, c12, €15, €16, €22, €23, €25, €31, €32, €35,

those connections that have small parameter coeffi-
cients following data assimilation. Of course, if the
model lacks sufficient degrees of freedom, it will not
be able to simulate the real system accurately. The
technique demonstrated here can readably be extended
to higher order approximations for ecosystems that
exhibit highly nonlinear response to environmental

€36, C42, €43, €45, c54, andcss, as well as a prediction  drivers.
equation (Eq(A.2), Appendix A).

As the results indicaté~g. 8), the change in model
form does not decrease model performance, and the5. Conclusion
parameter values recovered are similar, where compa-
rable, to those obtained in CaseTable 3. In partic- We have developed a modeling approach that ex-
ular, parameters associated with flows that were not tends standard inverse modeling by using lineariza-
present in the original simulation model, E7), tion, dimensional analysis, and time scale separation.
(namely, c31, ¢35, c36, and cs5 of Eq. (35)) have This model is particularly targeted to forecasting long-
small or zero valuesTable 3, which indicates the  term ecosystem dynamics that are largely governed
modeling approach is capable of discriminating be- by changes in environmental drivers. The model de-
tween flow diagrams with differing degrees of con- velopment is demonstrated with output from a simu-
nectivity. This example illustrates a possible approach lated NPZD model. The approach is robust and cap-
to model development. It may be desirable to begin tures year-to-year variations in the simulated ecosys-
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tem. In case runs, this approach shows the following Acknowledgement

strengths: (1) the sensitivity of model parameters is

relatively small, due to adoption of nondimensional- This research was supported by NSF grant OPP-
ization; (2) the model tolerates a high signal-to-noise 9911278.

ratio in the data used to calibrate the model; (3) less

knowledge on flux expressions for the food web is nec-

essary inthe firstorder approximation model. Case runs Appendix A. Environmental drivers

discovered, however, that the prediction precision is

lower when the environmental driver amplitudes are Environmental drivers are expressed with notations
higher than that under which the model is calibrated. 6 standing for time (day)]" for temperature°C) andL
The technique demonstrated here can be extended tdor light (Einsteins) as followings,

higher order approximations if necessary.

if 6 < 40 x 365;

. (360 . 360
T =10+ 83'”(365 — 90) + 35m(10><365>

L =100+ 805in(3:;(§ — 60) 4 305in<3609)

15 x 365
if 40 x 365 < § < 80 x 365; (A.1)

. (3609 . 360

. (360 . 36
L =100+ 805|n<365 — 60) + 305m<4 365

+ 120) ,

if 40 x 365 < 0 < 80 x 365;

_ 3
T =10+ ssin( 32 - 00) 4 3( 50 )

365 20 x 365 (A2)
3600 6 — 60 x 365\ 2
L = 100+ 80sin( > _ g0 — 30 L2 S0
+ s'”( 365 ) ( 20 x 365 > ’
if40 x 365 < 0 < 80 x 365;
3609 3609
T = 10+ 8sin( S — 90 + 45sin =~ _ 180
+ S'n( 365 > + S'”(s 365 ) . (A3)
3609 360
L = 100+ 80sin[ 222 _ 60) + 45si 120
+ S'”( 365 > + S'”<4 <365 " )

Appendix B. A more general first order
approximation model

The equation governing the parameters of the first
order approximation,
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