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1 Chapter 18
2 Use of Receding Horizon Optimal Control
3 to Solve MaxEP-based Biogeochemistry
4 Problems

5 Joseph J. Vallino, Christopher K. Algar, Nuria Fernández González
6 and Julie A. Huber

7 Abstract The maximum entropy production (MaxEP) principle has been applied to
8 steady state systems, but biogeochemical problems of interest are typically transient
9 in nature. To apply MaxEP to biogeochemical reaction networks, we propose that

10 living systems maximum entropy production over appropriate time horizons based
11 on strategic information stored in their genomes, which differentiates them from
12 inanimate chemistry, such as fire, that maximizes entropy production instanta-
13 neously. We develop a receding horizon optimal control procedure that maximizes
14 internal entropy production over different intervals of time. This procedure involves
15 optimizing the stoichiometry of a reaction network to determine how biological
16 structure is partitioned to reactions over an interval of time. The modeling work is
17 compared to a methanotrophic microcosm experiment that is being conducted to
18 examine how microbial systems integrate entropy production over time when
19 subject to time varying energy input attained by periodically cycling feed-gas
20 composition. The MaxEP-based model agrees well with experimental results, and
21 model analysis shows that increasing the optimization time horizon increases
22 internal entropy production.
23 Accepted (July 2012) in: Beyond the Second Law: Entropy Production and
24 Non-Equilibrium Systems. R. C. Dewar, C. H. Lineweaver, R. K. Niven and
25 K. Regenauer-Lieb, Springer.26

27 18.1 Introduction

28 In this chapter we examine the application of the maximum entropy production
29 (MaxEP) principle for describing microbial biogeochemistry. Biogeochemistry
30 enlists the fields of biology and geochemistry to understand chemical transfor-
31 mations and element cycling that occur in natural environments. Because the
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32 majority of biologically catalyzed reactions that occur on Earth, such as nitrogen
33 fixation, denitrification, metal redox reactions, sulfate reduction, etc., are orches-
34 trated by bacteria and archaea [12], we restrict our current focus to microbially
35 catalyzed reactions. Microbes (including viruses, bacteria and archaea) are the
36 simplest living organisms and are at the interface between chemistry and biology
37 because they catalyzed reactions that also occur abiotically, such as the oxidation
38 of iron (rusting), oxidation of hydrogen sulfide and methane, fixing N2 into NH3

39 and HNO3 (lightening and combustion). Since we can view bacteria and archaea as
40 simple molecular machines [12], they are most likely amendable to thermody-
41 namic description. They are critical for the support and functioning of all higher
42 life on Earth, so it is particularly important to understand how their presence and
43 growth controls the chemistry at local, regional and global scales. Our expectation
44 is that by employing MaxEP we will be able to develop more robust models that
45 can be used to study how biogeochemistry changes as the environment is altered
46 by natural phenomena and human actions.
47 Biogeochemistry can be viewed from two extreme perspectives. In the classic
48 perspective, organisms determine the overall biogeochemical processes that occur
49 in an ecosystem. This organismal centric view derives naturally from reduction-
50 ism, as biogeochemistry is by definition a product of organismal growth. However,
51 the organismal centric view implies that changing species composition will likely
52 produce different biogeochemistry. Furthermore, this approach requires detailed
53 knowledge on organism growth kinetics, predator–prey interactions, as well as on
54 how community composition may change as a result of internal dynamics or
55 external drivers. Except for extremely simple systems, this information is usually
56 lacking. Despite these short comings, the majority of biogeochemical models use
57 the organismal perspective as a basis of their design [13].
58 The second perspective on biogeochemistry takes a systems approach and
59 views ecosystems thermodynamically as open, non-equilibrium systems. In this
60 case, it is free energy potential, resource availability and information that deter-
61 mine ecosystem biogeochemistry. While organisms ultimately carry out the pro-
62 cess, thermodynamics determines which metabolic functions will dominate.
63 Organisms are viewed as interchangeable components, similar to microstates that
64 underlie macrostates in equilibrium thermodynamics [44]. It is this thermody-
65 namic perspective that we will employ to describe ecosystem biogeochemistry,
66 where MaxEP will serve as the governing principle. Because we will limit our
67 analysis to microbial processes, we will remove the typical organismal emphasis
68 and instead view a microbial community in functional terms as a collection of
69 catalysts (or molecular machines [12]) that are synthesized and degraded to
70 achieve MaxEP.
71 In this chapter we develop a MaxEP-based biogeochemical (BGC) model of a
72 distributed metabolic network. Model degrees of freedom are determined by
73 solving a receding horizon optimal control problem that maximizes entropy
74 production over successive intervals of time. Results from the model are compared
75 to data from two methanotrophic microcosm experiments, a control, and a treat-
76 ment where energy input is cycled over a 20 day period.
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77 18.2 MaxEP and Living Systems

78 The MaxEP conjecture [8, 10, 35, 36] states that steady state, non-equilibrium
79 systems with many degrees of freedom will likely be found in a state that maxi-
80 mizes internal entropy production. If internal self-organization, such as vortices
81 and macroscopic structures, facilitates internal entropy production, then those
82 structures will likely develop [26]. Similar to equilibrium thermodynamics that
83 requires systems to be found in the state of maximum entropy, MaxEP indicates
84 that nonequilibrium systems will head towards equilibrium along the fastest
85 possible pathway. That is, they will dissipate free energy as fast as possible within
86 the constraints imposed on the system [28, 44]. As discussed in this book and
87 elsewhere, several phenomena appear consistent with MaxEP, including planetary-
88 scale heat transport [19, 27], laminar to turbulent flow transition [29], plant
89 evapotranspiration [46], and many others (see [35] and references therein).

90 18.2.1 Living Systems as Catalysts

91 If MaxEP indicates that systems should race down free energy surfaces towards
92 equilibrium as fast as possible, then why isn’t the universe already at equilibrium?
93 The answer is because systems often get trapped in metastable states. For instance,
94 a mixture of methane and air at 20 �C, even within the combustible mixture
95 envelope (5–15 % CH4), will remain in this metastable state for a considerable
96 length of time due to the high activation energy required to overcome the repulsive
97 force of the electron cloud that prevents spontaneous reaction. Of course, if a spark
98 is introduce, then the highly exothermic reaction proceeds in a MaxEP manner due
99 to the increase in temperature. Another means in which the free energy can be

100 released is by introducing a catalyst. By reducing the activation energy, the
101 catalyst frees the system from its metastable state, so the reaction can proceed at
102 room temperature even if the system lies outside the combustion envelope or the
103 reactants are dissolved in water.
104 While most man-made catalysis are crude and exhibit poor selectivity, enzyme
105 catalysts synthesized by bacteria, as well as all living organisms, achieve extreme
106 reductions in activation energies along very selective reaction pathways. It is the
107 presence of these enzyme catalysts that hastens the dissipation of free energy and
108 entropy production through the destruction of chemical and electromagnetic
109 potentials. However, the increase in reaction rates provided by catalysts is
110 proportional to the amount of catalyst present. To maximize entropy production, it
111 is necessary for a system to rely on autocatalytic reactions that not only dissipate
112 chemical potential but also synthesize more catalyst in the process, such as the
113 methane oxidation reaction given by,
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OHCOHO2CH 23224 ++→Σ++ ð18:1Þ

115115
116 where is a catalyst, or biological structure, synthesized from available resour-
117 ces, such as C, N, P, Fe, in the environment, R. Because catalyst is produced as a
118 product of methane oxidation in Eq. (18.1), the reaction will proceed exponentially
119 provided resources, R, needed to build catalyst are not limiting. Of course,
120 Eq. (18.1) also represents growth of methanotrophs (specialized bacteria that eat
121 methane), but we are placing emphasis here on catalyst synthesis for the
122 dissipation of chemical potential, not on the nature of bacterial growth. This
123 distinction represents a paradigm shift from ‘we eat food’ to ‘food has produced us
124 to eat it’ [25].
125 In order to calculate the rate of en action, Eq. (18.1), we need to know the
126 standard molar entropy associated with biological structure, . Unfortunately,
127 there is considerable confusion associated with entropy calculations involving
128 living organisms. It is often believed that living organisms represent extremely low
129 entropy structures. This misconception can be attributed to confusion over the
130 association between entropy and order. Order, as might be represented by a pat-
131 tern, does contribute to entropy, but the entropy (or free energy) of the material the
132 pattern is constructed from must also be accounted for in the entropy calculation.
133 As [34] has shown, only when the pattern is written at the atomic scale does the
134 entropy of the pattern become significant compared to the entropy of the material
135 the pattern is written in.
136 Consider the words written on this page. Because the ink on the page forms a
137 pattern that contains information, the entropy of the page is lower than a page with
138 randomized letters [5]; however, the reduction of entropy is trivial compared to the
139 entropy of the paper the ink is written on. If the paper is burned, it hardly matters
140 in a thermodynamic context if the text contains the meaning of life or only
141 jibberish; the difference in the amount of free energy dissipated, or entropy pro-
142 duced, between the two cases is virtually undetectable, because the pattern on this
143 page is written at a macroscopic scale. Likewise, entropy associated with infor-
144 mation contained in DNA/RNA or protein is small compared to the entropy
145 associated with the nucleic or amino acid polymers the information is written in
146 [45]. All too often the entropy of the material a pattern is written in is overlooked,
147 which leads to incorrect assessments, such as the popular statement that a clean
148 desk has lower entropy than a messy one; both have the same thermodynamic
149 entropy or free energy. In terms of entropy and free energy calculations, a gram of
150 freeze-dried yeast or bacteria, which are viable upon rehydration, has the same
151 molar entropy and free energy of formation as an equivalent weight of a macro-
152 molecules in the appropriate proportions [3]. To paraphrase [34], the élan vital
153 carries no thermodynamic burden.
154 While the entropy associated with the information content of a cell is trivial
155 compared to the material of a cell, it is nevertheless of critical importance. It is
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156 useful information [1] contained in the genome that allows for the construction of
157 complex macromolecules that gives rise to the catalytic nature of biological
158 structure, . Ultimately, then, it is information that releases systems from meta-
159 stable states to flow down free energy surfaces and produce entropy. Evolution
160 works to refine this information and thereby increase the rate of entropy produc-
161 tion. Information and entropy are intimately coupled [17]. Philosophically, we
162 postulate free energy spawns the creation of information that hastens free energy’s
163 destruction.

164 18.2.2 MaxEP and Transient Systems

165 An element of time has been implied in the MaxEP description above for con-
166 structing biological structure to dissipate free energy; however, all MaxEP theories
167 to date have been applied to steady state systems only, where time is not involved
168 in the equations. There currently does not exist a MaxEP theory for transient
169 systems where the state is allowed to vary with time, but it is transient systems we
170 are often most interested in. The objective in modeling is usually to understand and
171 predict how a system of interest will respond to perturbations or changes in
172 external drivers. To build a transient biogeochemistry model based on MaxEP
173 requires that we speculate as to how time may affect the MaxEP solution.
174 For any particular system we can define internal entropy production once the
175 system boundaries have been defined [32, 35], as well as formulate an entropy
176 balance equation, such as
177

dS

dt
¼ JS þ _r ð18:2Þ

179179 where S is system entropy (kJ K-1), JS is the entropy flux into the system (from
180 mass and heat transport) and _r is the entropy production rate due to irreversible
181 processes occurring within the system. The second law requires that _r� 0 [20].
182 We also define r as

R
_rdt, which is the amount entropy that derives from internal

183 irreversible processes over some interval of time. Throughout this manuscript we
184 will only be concerned with r or _r, but not S, because MaxEP applies to internal
185 entropy production only.
186 For a transient system, internal entropy production is a function of time, _rðtÞ, so
187 how can MaxEP be defined when _r varies with time? One special case would be to
188 maximize _r at every instance in time, which would be equivalent to taking a steepest
189 decent pathway along the free energy surface defined by the current state and all
190 possible pathways leading from that point, similar to water flowing downhill.
191 However, following a steepest decent pathway at each instance in time may not lead
192 to the greatest internal entropy production over an interval of time. Consider
193 Fig. 18.1 for example. Instantaneous internal entropy production at time tn is greater
194 along pathway PA than along pathway PB, since _rAðtnÞ[ _rBðtnÞ. But taking the
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195 steepest descent pathway at point P sets the system along a trajectory that ultimately
196 produces less internal entropy than had the system followed pathway PB, since
197 rB tn þ Dt�ð Þ[ rA tn þ Dt�ð Þ. If the system had a means to explore all possible future
198 pathways leading from P over Dt� time, then the system could increase entropy
199 produced over the steepest descent pathway, PA, by following pathway PB. That is,
200 if the system has a way to generate predictions, then forgoing the steepest descent
201 pathway can lead to greater internal entropy production over time. We postulate that
202 this is precisely what living systems do.
203 Because living systems can store information in their genome, they can develop
204 temporal strategies based on passed events that become refined via evolutionary
205 selection. Genomic information not only allows organisms to access free energy
206 trapped in metastable states, but also allows them to follow pathways that avoid
207 the steepest decent route and produce more entropy over time. For instance, some
208 bacteria form spores or dormant cells that increase their fitness when conditions
209 become hostile [23, 24]. Likewise, many organisms will increase fat storage in the
210 fall to survive the winter months. While temporal strategies are well recognized,
211 they are often not accounted for in models. Instead, most biogeochemistry models
212 view the system as a type of Markov process where system response only depends
213 on the current state. We believe what differentiates abiotic systems from biotic
214 ones, is the ability of the latter to store information that allows them to develop
215 temporal strategies and out compete abiotic systems over time in internal entropy
216 production [44]. Maximizing internal entropy produced over intervals of time is
217 the basis of the model and associated experiment discussed in the next section.

218 18.3 Methods

219 Discussed below are descriptions of a microbial microcosm experiment and an
220 associated mathematical model that are intended to explore the idea that living
221 systems develop temporal strategies that increase entropy production when aver-
222 aged over time. The experimental setup employs methanotrophic microcosms
223 whose energy input is cycled over time, while the modeling of the microcosms is
224 based on a distributed metabolic network of biochemical reactions that are
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225 controlled to maximize averaged entropy production over intervals of time using a
226 receding horizon optimal control approach.

227 18.3.1 Experimental System

228 The experiment is designed to examine how microbial communities adapt and
229 evolve to cope with periodic energy inputs using methane plus air as the sole
230 source of energy. The experimental setup [44] consists of four 18 L microcosms
231 that are operated in chemostat mode at a dilution rate of 0.1 d-1 and are sparged at
232 a gas flow rate of 20 mL min-1 (0 �C, 101.3 kPa). Two control microcosms are
233 sparged continuously with a gas mixture of 4.9 % CH4, 19.6 % O2, 0.03 % CO2,
234 balance N2, while two other microcosms are cycled between the methane plus air
235 mixture and just air (20.95 % O2, 0.033 % CO2, balance N2) over a 20 d period
236 (10 days with CH4 on, 10 days with CH4 off). All microcosms were inoculated
237 approximately 4 years ago with whole water samples collected from a coastal
238 pond and cedar bog (1 L each). A mineral salts medium (10 mM K2HPO4, 50 lM
239 KNO3, 100 lM MgSO4, 100 lM CaCl2, 100 lM NaCl, plus trace elements
240 solution) adjusted to pH 6.8 is used as feed.
241 Output gas composition is analyzed on-line every 5 h for CH4 (NDIR, California
242 Analytical Instruments), O2 and CO2 (laser diode adsorption spectroscopy, Oxigraf)
243 concentrations, and analyzer drift is compensated for by monitoring input gas
244 composition. Dissolved oxygen and pH electrodes are measured and recorded every
245 hour. Gas cycling and all data acquisition are under computer control and posted
246 on-line (http://ecosystems.mbl.edu/MEP). Periodically, liquid samples are with-
247 drawn for both nutrient analysis (NO3

-, NH3, particulate organic C (POC), N
248 (PON), dissolved organic C (DOC), and N (DON)) and microbial community
249 assessment via cell counts and 454-tag pyrosequencing of the V4-V6 hypervariable
250 regions of the 16S rRNA gene [16].

251 18.3.2 Metabolic Network Model

252 The MaxEP-based biogeochemistry model uses a distributed metabolic network
253 approach to simulate the functional attributes of a microbial community [43]. For
254 the methanotrophic microcosms, four biological structures are used to capture
255 methane oxidation to methanol , methanol to CO2 , the turnover of biological
256 structures , and the consumption of recalcitrant (i.e., hard to decompose)
257 organic C (dC) and N (dN), (Table 18.1 and Fig. 18.2). This metabolic network
258 structure differs significantly from our previous approach [44]. Here, we use whole
259 reactions instead of half reactions to represent metabolism, which has two main
260 advantages: (1) since half reactions produce (or consume) electrons, we do not
261 need equations and constraints to insure electron conservation and (2) biological
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262 structure synthesis is directly coupled to its associated redox reaction pair.
263 Nevertheless, networks based on half reactions are useful for discovering impor-
264 tant reaction pairs that evade detection, such as anammox [21], because models
265 based on half reactions build their own redox pair combinations.
266 Reaction stoichiometries are parameterized by two types of optimal control
267 variables, ej and xi;j, where the former controls the efficiency of biological
268 structure synthesis, and the latter controls how biological structure is allocated to

Table 18.1 Reaction stoichiometries and optimal control variables (OCV: ej and xi;j in
Eq. 18.4) associated with the four biological structures used to represent methanotrophic
communities

Biological structure is unit carbon based and its composition is given by CHaj Obj
Ncj

. The
stoichiometric coefficients, ai;j, bi;j and d1;4 are determined from O, H and N elemental balances
for each reaction as necessary

Fig. 18.2 Distributed
reaction network for
methanotrophic communities.
dC and dN: recalcitrant
organic C and N,
respectively. Lines of similar
color and style represent a
single reaction group. H2CO3

not shown to improve
readability. See Table 18.1
for stoichiometry
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269 sub-reactions associated with each biological structure (Table 18.1). For instance,
270 x1;1 determines how is partitioned between nitrate uptake (r1;1) and ammonia
271 uptake (r2;1). The value of ej plays a critical role in the model, because as ej

272 approaches 0 the reaction behaves as pure combustion dissipating substantial
273 amounts of free energy, while as ej approaches 1 biological structure is synthesized
274 with minimum free energy dissipation and maximum conversation of C substrate
275 into biomass. As discussed above and elsewhere [45], reaction free energy for
276 biological structure synthesis as ej approaches 1 is still negative or within the
277 neighborhood of 0, but in order to achieve a growth efficiency of near 100 %,
278 reactions must proceed reversibly (i.e., infinitely slowly). This thermodynamic
279 constraint explains why we do not find bacteria opting for an ej near 1 strategy.
280 The partitioning of labile (i.e., easily degraded) versus detrital C and N in the
281 four reactions associated with biological structure decomposition, ri;3, is solely
282 determined by e3. While this is a crude approximation, it has the advantage that no
283 additional parameters are needed. One of the objectives of the model is to limit the
284 number of adjustable parameters and place as many degrees of freedom as possible
285 in the optimal control variables ej and xi;j. The detrital C (dC) and N (dN) pools
286 are modeled separately, but are treated as a single molecule, dCN, in reaction r1;4

287 with its concentration, cdCN, set to cdC and its N:C ratio given by cdCN ¼ cdN=cdC.
288 Total internal entropy produced by the microbial community (kJ K-1), ignoring
289 small contributions from mixing entropy [45], is readily calculated from the
290 product of reaction rate (ri;j) and the associated reaction free energy (DrGri;j )
291 summed over each reaction in the network, as given by,
292

_rðtÞ ¼ �VL

T

XnS

j¼1

XnSj

i¼1

ri;jðtÞDrGri;jðtÞ ð18:3Þ

294294 where VL is the liquid volume of the microcosms (m3), T is temperature (K), nS is
295 the number of biological structures (4 in this case), and nSj is the number of sub-
296 reactions associate with (Table 18.1). We use [2] approach for calculating
297 reaction free energies, DrGri;j , that accounts for species concentrations and activity
298 coefficients, and [4] value for the free energy of formation of biological structure
299 (see also [44, 45]).
300 Reaction rates are given by the following modified Monod kinetics expression
301 [45]
302

ri;j ¼ mje
2
j ð1� e2

j Þ
Ync

k¼1

ck

ck þ jje4
j

 !Ki;j;k

xi�1;j

YnSj�1

l¼i

ð1� xl;jÞfGðDrGri;jÞcSj : ð18:4Þ

304304305 The parameters mj and jj were chosen to capture bacterial growth kinetics
306 observed in nutrient deplete (i.e., oligotrophic) to nutrient abundant (i.e., eutro-
307 phic) conditions. That is, mj and jj are independent of community composition.
308 The exponent Ki;j;k is set to either 0 or 1 depending on reaction stoichiometry
309 (Table 18.1) for the nc state concentration variables, ck, and xl;j determines how
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310 is partitioned to its associated nSj sub-reactions, where x0;j ¼ 1 for all reac-
311 tions. For all model runs, we assume decomposition of biological structure occurs

312
indiscriminately, so that xi;3 ¼ cSiþ1=

Piþ1

k¼1
cSk for i ¼ 1; . . .; 4. To insure no reaction

313 proceeds if its free energy of reaction, DrGri;j , is greater than zero, the function fG

314 is set to,
315

fGðDrGri;jÞ ¼
1� evGDrGri;j DrGri;j � 0

0 DrGri;j [ 0

�

; ð18:5Þ

317317 where vG is chosen for numerical integration criteria, because the ð1� e2
j Þ term in

318 Eq. [18.4] imposes an empirical thermodynamic constraint as ej approaches 1.
319 Once again, the motivation for Eq. (18.4) is based on minimizing the number of
320 free parameters. Since mj and jj have predetermined values for all reactions [45],
321 except for reaction r1;4 discussed below, reaction rates solely depend on the values
322 of the optimal control variables and the concentration of the state variables.
323 A process that is difficult to model is biofilm formation in the MCs. After several
324 hundred days of operation, considerable biomass accumulated on the reactor walls,
325 even though the MCs were gently mixed. While we could have developed a
326 sophisticated biofilm sub-model, this would result in numerous poorly defined
327 additional parameters. Instead, we simply introduce one parameter, fPL, to represent
328 the fraction of particulate matter (both living and detrital) that is not subject to
329 chemostat washout because it is associated with the biofilm (see Table A.1).

330 18.3.3 Optimization Model

331 To determine how ej and xi;j must vary over time in order to maximize internal
332 entropy production, we formulate and solve a receding horizon optimal control
333 (RHOC) problem [7, 30]. RHOC is used in many fields. For example, in
334 economics RHOC is used to determine how short-term investments should be
335 allocated to maximize long-term returns, such as in retirement fund management.
336 Because long-term prediction of markets is not perfect, short-term strategies are
337 updated periodically based on current mark conditions. We implement a similar
338 approach and maximize internal entropy production over successive intervals of
339 time as given by,
340

max
uðtnþ1Þ

1
Dt�

ZtnþDt�

tn

_rðsÞe�kwðs�tnÞds where u ¼ eT xT
� �T ð18:6aÞ

342342

343
344

subject to :
dxðtÞ

dt
¼ fðxðtÞ; uðtÞÞ and 0\uðtÞ� 1 ð18:6bÞ
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346346 where Dt� is the long-term optimization interval from the current time, tn, over
347 which entropy production, _r, is maximized. A conventional weighting function,
348 e�kwðt�tnÞ, discounts the importance of entropy production as time increases beyond
349 tn due to uncertainties in predicting future states. After the value of the optimal
350 control variables ej and xi;j, are determined over the optimization interval
351 ½tn; tn þ Dt��, the state equations are updated only to tnþ1 ¼ tn þ Dt, where
352 Dt�Dt�, as illustrated in Fig. 18.1. The updating interval, Dt, is typically less than
353 Dt� to minimize discontinuities in state and control variables at the end of an
354 interval. Average internal entropy production over the update interval, Dt, is given
355 by,
356

_rðtnþ1Þh i ¼ 1
Dt

ZtnþDt

tn

_rðsÞds: ð18:7Þ

358358359 Total internal entropy produced over k intervals is given by rðtn : tnþkÞ ¼

360
Dt
Pk

i¼1
_rðtnþiÞh i. Once the state and control variables are updated to tnþ1 ¼ tn þ Dt,

361 Eq. (18.6a) is used to solve the next optimization interval, tnþ1 þ Dt� to extend the
362 solution to tnþ2 ¼ tnþ1 þ Dt; this iteration is repeated until the desired final sim-
363 ulation time is reached.
364 The optimization, Eq. (18.6a), is subject to box constraints on the control
365 variables between 0 and 1, and by mass balance constraints on the state variables,
366 xðtÞ, given by the differential equations defined by fðxðtÞ; uðtÞÞ in Eq. (18.6b). The
367 state variables for the microcosm experiment consist of nutrient concentrations,
368 cðtÞ, gas partial pressures, pðtÞ, and concentration of biological structures, cSðtÞ, so

369 that xðtÞ ¼ cTðtÞ; pTðtÞ; cT
SðtÞ

� �T
. The mass balance equations are listed in the

370 Appendix (Table A.1). The differential equations were numerically integrated
371 using a high precision method [6] and the optimization problem was solved using a
372 derivative free algorithm (BOBYQA [39]). Control variables are discretized over
373 the ½tn; tn þ Dt�� interval using nknots grid points and linear interpolation is used to
374 produce continuous control functions.

375 18.4 Results

376 Time zero of the microcosm experiments corresponds to 00:00 20 Aug 2010, and
377 on day 210.5 gas cycling of microcosms (MC) 1 and 4 commenced after experi-
378 mental operating conditions had been finalized, in particular nitrogen-limited
379 growth was achieved. Numerical simulations using the MaxEP-based BGC model
380 were initialized on day 100, which provided sufficient time to achieve steady state
381 conditions prior to gas cycling. Both experimental and modeling results are
382 compared over days 200–500.
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383 Only two model parameters were qualitatively adjusted to achieve reasonable
384 agreement between model results and observations for all four MCs (Figs. 18.3
385 and 18.4). Because detritus is a rather amorphous, non-polymeric material, its
386 decomposition is difficult and is often the rate limiting step in microbial BGC [14].
387 Consequently, we reduced m4 in Eq. (18.4) to 35 d-1 from the standard value of
388 350 d-1 [45]. We also tuned the biofilm parameter, fPL, to 0.2. All other parameter
389 values are well-defined constants, such as MC volume, dilution rate, feed
390 concentrations, etc. All model degrees of freedom, other than m4 and fPL, reside in
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Fig. 18.3 Observed and modeled reactor exit gas concentrations for the controls (MC 2 and 3,
left column) and cycled (MC 1 and 4, right column) microcosms. Modeled predictions are shown
as the orange (or grey in BW) solid line, while experimental data are shown as open symbols
connected by dashed lines. Model results are for kw ¼ 0:230 d-1, Dt ¼ 10 d and Dt� ¼ 20 d
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391 the 6 optimal control variables and the three interval optimization parameters, kw,
392 Dt and Dt�.
393 To examine how the optimal interval parameters affect the solution and overall
394 internal entropy production, we conducted several simulations by varying kw, Dt
395 and Dt� for both the control and the gas-cycled simulations (Table 18.2).
396 In general, these results show that as the optimization interval increases, total
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Fig. 18.4 Simulated data [orange (or grey) lines] compared to observations of nitrate and
ammonium concentrations for the control MCs (MC 2 and 3, left column) and the methane cycled
MCs (MC 1 and 4, right column). Also see caption to Fig. 18.3

Table 18.2 Internal entropy produced over 400 days for the control and gas-cycled simulations
for different optimal interval parameters values: kw, Dt and Dt�

Dt Dt� kw nknots rð100 : 500Þ (kJ K-1)

(d) (d) (d-1) Control Cycled

0.1 0.1 0 1 2.07 1.45
0.1 1 3.00 5 18.56 7.71
1 1 0 1 16.82 6.94
1 5 0.921 5 22.85 9.05
10 20 0.230 15 24.19 10.53
20 40 0.115 20 24.64 14.55
20 50 0.0921 25 24.77 15.15
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397 internal entropy produced (r) over the 400 days of simulation increases, but
398 asymptotes to approximately 25 and 15 kJ K-1 for the control and gas-cycled
399 simulations, respectively. Except for very short intervals, entropy production in the
400 control simulations is not strongly affected by choices of Dt or Dt� (Table 18.2).
401 However, for very short optimization intervals (Dt� ¼ 0:1 d), entropy production is
402 significantly depressed (Table 18.2). A similar phenomenon occurs in the gas-
403 cycled simulations, but the decrease in total entropy production as Dt� decreases is
404 more gradual.
405 As Dt� becomes small, biological structures are allocated to maximize entropy
406 production in a manner that resembles abiotic systems, such as fire. In particular,
407 examination of the control simulations reveals that the system does not sufficiently
408 allocate resources to biological structure turnover, . The concentration of in
409 the control simulation with Dt� ¼ 0:1 is approximately equal to and , but in
410 the simulation with larger Dt� values, concentration is twice that of and .
411 The optimal controller attains higher concentration of by setting e3 to
412 approximately 0.62, while in the low entropy producing case e3 is only set to 0.34.
413 The higher concentration of allows the system to achieve much higher
414 remineralization rates, so that reactions r2;1 and r2;2 can attain much higher rates
415 due to the increase in NH3 availability from turnover. However, under short
416 optimization intervals, the system’s time horizon is too short to realize a return on
417 investment in with respect to entropy production or utilization of available
418 chemical potential. When the time scale is short, the system does not make best
419 use of available resources.
420 The gas-cycled simulations also generate interesting results when different
421 ðDt;Dt�Þ values are examined. Figure 18.5a shows methanol dynamics over two
422 gas cycling periods (40 d, beginning on day 300) for four selected simulations in
423 Table 18.2 based on the ðDt;Dt�Þ values. When time scales are short,
424 ðDt;Dt�Þ = (0.1, 1 d) and (1, 5 d), methanol (CH3OH) accumulates immediately
425 after methane gas is turned on (at 300.5 and 320.5 d; Fig. 18.5a, dashed lines).
426 However, when the time scale specified by the optimization parameters approach
427 the period length of the gas cycling, ðDt;Dt�Þ = (10, 20 d) and (20, 50 d),
428 methanol accumulation occurs immediately before methane is switched off (at
429 310.5 and 330.5 days; Fig. 18.5a, solid lines). When the optimization time scales
430 are long, the model develops an anticipatory control strategy, where methanol is
431 produced as a storage compound that can be utilized during the phase when
432 methane is absent. By storing some of the methane captured in the first half of the
433 cycle as methanol, the system is able to oxidize more methane and produce more
434 internal entropy compared to the simulations using short term optimization
435 parameters. The strategy only accumulates methanol near the end of the period,
436 because methanol is also lost due to dilution, which does not contribute to internal
437 entropy production.
438 We can see how the control strategy achieves methanol accumulation by
439 examining the concentration of biological structures and growth efficiencies for the
440 case where ðDt;Dt�Þ equals (20, 50 d) over the two gas cycling periods
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441 (Fig. 18.5b, c). Just prior to the loss of methane (310.5 and 330.5 d), there is an
442 increase in and a decrease in (Fig. 18.5b). Based on the reaction network
443 (Fig. 18.2, Table 18.1), this allocation of catalyst favors methanol overproduction,
444 so methanol accumulates rapidly. Immediately following the addition of methane,
445 there is a rapid rise in concentration and a decrease in , which drives
446 methanol consumption up. To attain these changes in and abundances, there
447 are the expected changes in the associated growth efficiencies (Fig. 18.5c), but
448 there is also a large change in e3. In particular, e3 is driven to 1 following the loss
449 of methane feed, which allows all biological structures to remain at high
450 concentrations in the absence of methane because ri;3 is driven to zero (Eq. 18.4).
451 Just prior to the introduction of methane, e3 is reduced significantly, which causes
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452 a large turnover of biological structure (Fig. 18.5b), but biological structure
453 concentrations quickly rebound once methane is again made available. To examine
454 if these changes are occurring in the actual microcosms, we are currently sampling
455 for cell abundances, DNA/RNA, and methanol concentration.

456 18.5 Discussion

457 In this chapter we have shown that a microbial biogeochemistry model based on
458 the MaxEP principle produces results that are comparable to those obtained
459 experimentally from microbial methanotrophic microcosms (Figs. 18.3 and 18.4).
460 Unlike most microbial biogeochemistry models, the MaxEP model contains very
461 few adjustable parameters, because we have been able to place most of the model’s
462 degrees of freedom into the optimal control variables, ej and xi;j, whose values are
463 determined by maximizing internal entropy production. By placing emphasis on
464 catalytic activity at the system level, rather than on competition of individuals, the
465 MaxEP approach provides a unique perspective on how ecosystems may function
466 and evolve. Due to the novelty of the MaxEP approach, many of the ideas and
467 conjectures that derive from MaxEP need to be tested, or at least shown to be
468 improvements over canonical approaches. Microbial microcosms provide excel-
469 lent experimental systems for testing MaxEP-based approaches for describing
470 living systems, as microbial systems have fast characteristic times scales, high
471 population densities and high biodiversity, all of which can be readily manipulated
472 and monitored.
473 The MaxEP-BGC model predicts a comprehensive suite of output variables that
474 can be compared to observations, only some of which were presented here. In
475 addition to providing concentration data and reaction efficiencies, the model
476 predicts reaction rates through the metabolic network (Table 18.1), reaction free
477 energies, and how biological structure partitioning among sub-reactions changes
478 over time (i.e., xi;j). We expect our on-going measurements of community
479 composition from 454-tag pyrosequencing and quantitative PCR analysis of
480 function gene levels and expression will assist in comparing model output to
481 observations [15]. Preliminary molecular results show that very high microbial
482 diversity is maintained in the microcosms (*600 operational taxonomic units);
483 however, community composition of the methanotrophs changes substantially over
484 time (microscopic behavior), but this does not alter methane oxidation rates
485 (macroscopic behavior), a characteristic consistent with MaxEP [9].
486 Perhaps the most intriguing result from our implementation of MaxEP for
487 describing microbial biogeochemistry is the proposed distinction between abiotic
488 and biotic systems based on instantaneous versus averaged entropy production.
489 When entropy production is maximized instantaneously, no biological structure is
490 produced because some of the free energy would simply be converted to another
491 form of chemical potential instead of being destroyed. This problem is solved by
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492 maximizing entropy produced over an interval of time, which leads to the
493 hypothesis. Because biotic systems are able to store information in their genome,
494 they can implement temporal strategies that can out-compete abiotic processes in
495 some situations. Because of genomic complexities, we do not know a priori the
496 nature of the temporal strategies at this time, but this lack of knowledge can
497 be circumvented by assuming that evolution has produced systems that extract the
498 greatest possible free energy from a system over some appropriate characteristic
499 time scale. Our results indicate (Table 18.2) that the longer the time scale, the
500 more entropy that can be produced, but longer time scales require higher fidelity in
501 predicting future states. Prediction in this case simply means that some of the
502 temporal strategies the system possesses will be successful. Mismatches between
503 prediction and the true state, due to perturbations, noise and uncertainties,
504 ultimately limit the time scale interval for entropy production.
505 Our receding horizon optimal control implementation of the MaxEP problem
506 shows that when time scales are short, biological structure should be invested for
507 immediate entropy production, which leads to methanol production following the
508 introduction of methane (Fig. 18.5a, dashed lines). This is an R-selection strategy
509 [38], which is a possible driving mechanism for cross feeding [40], because partial
510 substrate oxidation can increase growth rate [37]. When time scale is increased,
511 the system allocates resources to (the equivalent of grazers) as well as the later
512 production of methanol that acts as a storage compound (Fig. 18.5a, solid lines).
513 Systems oriented analyses of natural ecosystems indicate that the presence of
514 grazers increases nutrient recycling and ecosystem productivity [31, 41, 42].
515 Predators, and trophic structures in general, increase the characteristic time scale
516 of an ecosystem. It appears reasonable that organisms with long development
517 times, or life histories, impart the long characteristic time scales observed in
518 mature ecosystems, such as forests. Under this conjecture, bacterial systems may
519 be closer to fire than an ecosystem composed of macroscopic organisms that
520 provide the long characteristic time scale with respect to entropy production.
521 Experimentally, we expected more effective use of CH4 in the gas-cycled
522 treatment; that is, we expected entropy production to be similar between the
523 control and gas-cycled MCs. Interestingly, the MaxEP-BGC model also has
524 difficulties in producing entropy in the gas-cycled MCs (Table 18.2), but matches
525 the experimental data well (Figs. 18.3 and 18.4). Because of methanol washout
526 from the chemostat, the model only uses methanol as a storage compound near the
527 end of the CH4-on cycle, which limits the system’s ability to store chemical
528 potential. Storage of free energy in biological structure is also limited due to N
529 requirements for . Perhaps the experiment and model are lacking higher trophic
530 levels (i.e., macrofauna) that would provide a time scale relevant to the 20 day
531 gas-cycle period. Currently, the model uses cannibalism of as a means of
532 trophic closure [33], so adding additional trophic levels may be one means
533 of increasing the characteristic time scale in the model. As for the experiment, we
534 are currently characterizing the eukaryotic community structure via cell counts.
535 Our MaxEP-BGC model currently focuses on microbes as reaction catalysts that
536 dissipate chemical potential, but the MaxEP concept can be extended to macro-
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537 fauna and-flora as well. Metabolically, macroorganisms are rather prosaic; how-
538 ever, in addition to their longer characteristic time scales, they provide physical
539 structure, increase the surface area of particulate matter via mastication and greatly
540 enhance transport processes that often limit reaction rates [11, 18, 22]. Application
541 of MaxEP to natural ecosystems will require understanding the functional contri-
542 butions of macroorganisms, in particular with respect to transport processes, which
543 is not a typical focus in ecology. More research needs to be done in this area.

544 18.6 Conclusions

545 We have been able to use the MaxEP conjecture to develop a microbial biogeo-
546 chemistry model that reproduces reasonably well experimental data obtained from
547 a methanotrophic microcosm experiment. By assuming that genomic information
548 allows living systems to maximize entropy production over a characteristic time
549 scale, we have been able to formulate the model as a receding horizon optimal
550 control problem. Most of the model’s degrees of freedom have been captured by
551 the optimal control variables whose values are determined by maximizing entropy
552 production over successive intervals of time. This approach greatly reduces the
553 number of adjustable parameters whose values are often unknown, poorly con-
554 strained and seldom constant. Our results indicate that temporal strategies that are
555 successful over greater durations of time will result in greater entropy production.
556 From this hypothesis, we have developed a methanotrophic microcosm experiment
557 to study how microbial communities respond, adapt and evolve to time varying
558 inputs of energy. Based on experimental data to date, there appears to be good
559 agreement between the MaxEP-BGC model results and experimental data.
560 All organisms possess genomic and acquired information that dictates survival
561 strategies and life cycles that operate over defined characteristic time scales. These
562 time scales can be as short as minutes or hours (i.e., for some bacteria) to as long
563 as centuries or more (i.e., some tree species). Our approach has illustrated the
564 importance that temporal strategies have on ecosystem dynamics, but our choice of
565 time scale (for both Dt and Dt�) has been somewhat arbitrary based on our intuitive
566 understanding of bacterial growth and the reduced complexity of our experimental
567 microcosms. Natural ecosystems are comprised of populations of different
568 organisms that operate over a multitude of time scales. However, we hypothesize
569 that organisms with long time scales can access more free energy (and ultimately
570 producing more entropy) than those operating on short time scales provided the
571 system is stable enough for long term predictions. Viewing ecosystems as a
572 collection of free energy dissipating machines adaptively operating over a spec-
573 trum of time scales may help us understand how these systems assemble, operate
574 and respond to disturbances of differing magnitude and frequency. Further
575 research is needed relating the ecological concepts of temporal strategies and
576 succession to quantitative measures and representations of time scales for the
577 dissipation of free energy.
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582 Appendix

583 Tables A.1 and A.2.

Table A.1 Mass balance equations for the rates of change of chemical species concentrations in
the microcosm model used for constraints in Eq. (18.6b)*

_cCH4 ðtÞ ¼ �r1;1 � r2;1 þ FLðcf
CH4
� cCH4 Þ þ kLaðpCH4=kCH4 ðTÞ � cCH4 Þ

� �
=VL

_cCH3OHðtÞ ¼ ð1� e1Þðr1;1 þ r2;1Þ � r1;2 � r2;2

þ FLðcf
CH3OH � cCH3OHÞ þ kLaðpCH3OH=kCH3OHðTÞ � cCH3OHÞ

� �
=VL

_cH2CO3 ðtÞ ¼ð1� e2Þðr1;2 þ r2;2Þ þ e3ð1� e3Þ
X4

i¼1

ri;3 þ ð1� e4Þr1;4

þ FLðcf
H2CO3

� cH2CO3 Þ þ kLaðpCO2=kH2CO3 ðTÞ � cH2CO3 Þ
� �

=VL

_cdCðtÞ ¼ ð1� e3Þ2
P4

i¼1
ri;3 � r1;4 þ FLðcf

dC � fPLcdCÞ=VL

_cHNO3ðtÞ ¼ �e1c1r1;1 � e2c2r1;2 þ FLðcf
HNO3

� cHNO3 Þ=VL

_cNH3 ðtÞ ¼ �e1c1r2;1 � e2c2r2;2 þ e3
P4

i¼1
ð2� e3Þci � c3ð Þ ri;3 þ d1;4r1;4 þ FLðcf

NH3
� cNH3 Þ=VL

_cdNðtÞ ¼ ð1� e3Þ2
P4

i¼1
ciri;3 � cdCNr1;4 þ FLðcf

dN � fPLcdNÞ=VL

_cO2 ðtÞ ¼ �
P2

i¼1

P2

j¼1
ai;jri;j �

P4

i¼1
ai;3ri;3 � a1;4r1;4 þ FLðcf

O2
� cO2 Þ þ kLaðpO2=kO2 ðTÞ � cO2 Þ

� �
=VL

_pCH4 ðtÞ ¼ FGðpf
CH4
� pCH4 Þ þ kLa RTðcCH4 � pCH4=kCH4 ðTÞÞ

� �
=VG

_pCH3OHðtÞ ¼ FGðpf
CH3OH � pCH3OHÞ þ kLa RTðcCH3OH � pCH3OH=kCH3OHðTÞÞ

� �
=VG

_pCO2 ðtÞ ¼ FGðpf
CO2
� pCO2 Þ þ kLa RTðcH2CO3 � pCO2=kH2CO3 ðTÞÞ

� �
=VG

_pO2 ðtÞ ¼ FGðpf
O2
� pO2Þ þ kLa RTðcO2 � pO2=kO2 ðTÞÞ

� �
=VG

_cSjðtÞ ¼ ej
PnSj

i¼1
ri;j � rj;3 þ FLðcf

Sj
� fPLcSjÞ=VL for j ¼ 1; . . .; 4

*The superscript f refers to concentration of variables in the feed stream, FL and FG are the liquid
and gas volumetric feed rates, respectively, kLa is the liquid-side mass transfer coefficient, khðTÞ
is a Henry’s law coefficient for solute h, VG is the gas headspace volume, and fPL is the fraction of
particulate matter loss due to dilution; that is, not associated with the biofilm

AQ1
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Table A.2 Nomenclature

Variable Definition Units

ai;j Oxygen stoichiometric coefficient for reaction ri;j (see Table 18.1)
bi;j Water stoichiometric coefficient for reaction ri;j (see Table 18.1)
ci Concentration of species i (c in vector form) mmol m-3

cf
i

Concentration of species i in microcosm feed mmol m-3

cSj Concentration of biological structure j mmol m-3

di;j Ammonia stoichiometric coefficient for reaction ri;j (see Table 18.1)
dC Detrital organic carbon
dN Detrital organic nitrogen
fPL Fraction of particulate matter loss due to dilution
f Vector function of state equations (see Table A1)
kiðTÞ Henry’s law coefficient for solute i Pa m3 mmol-1

kLa Air–water gas transfer coefficient, liquid side m3 d-1

kw Optimization discounting parameter d-1

nc Number of chemical species
nknots Number of grid points for discretizing control variables over an

optimization interval (see Table 18.2)
nS Number of biological structures,

nSj Number of sub-reactions associated with

pi Partial pressure of gas species i Pa

pf
i

Partial pressure of gas species i in feed gas Pa

ri;j Reaction rate mmol m-3 d-1

Dt Optimization update interval d
Dt� Optimization interval d
t Time d
u Vector of control variables (e, x)
x Vector of state variables (c, p, cS)
FG Gas flow rate to microcosms m3 d-1

FL Liquid flow rate to microcosms m3 d-1

DrGri;j Gibbs free energy of reaction for reaction ri;j kJ mmol-1

R Gas constant (units depend on equation)
S System entropy kJ K-1

Biological structure j that catalyzes reaction ri;j

T Temperature K
VG Gas volume of microcosm m-3

VL Liquid volume of microcosm m-3

ai Hydrogen atoms in unit carbon formula for biological structure i
bi Oxygen atoms in unit carbon formula for biological structure i
ci Nitrogen atoms in unit carbon formula for biological structure i
ej Growth efficiency for biological structure j. (Optimal control variable)
jj Substrate affinity parameter in reaction ri;j mmol m-3

mj Maximum specific reaction rate for reaction ri;j d-1

r Entropy produced from irreversible processes within system kJ K-1

_r Rate of internal entropy production kJ K-1 d-1

vG Parameter in free energy weighting function, fG mmol kJ-1

(continued)
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