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I. INTRODUCTION

Mutation/selection oOr genetic engineering techniques employed to increase product yield
in fermentations often only alleviate metabolic regulation occurring at or near the end of a
biosynthetic chain that leads to that particular product. However, microorganisms have
evolved biosynthetic pathways to produce energy and metabolites necessary for growth and
replication, not for the overproduction of specific biocompounds. Conseguently, not only
does the regulation of the product of interest need to be removed, but also the main fueling
reactionsdf the cell must be rerouted in such a way as to channel the main carbon flux into
the biosynthetic pathway required for product synthesis.

To achieve, or at least approach, theoretica product yields in an optimal manner, one
must know how carbon partitioning occurs between the fueling reactions, biomass, and
product. This necessitates the development of means to determine the partitioning of carbon
flux between the primary biosynthetic pathways. Once acquired, this information can be
used torechannel thecarbon in thefueling reactionsinto the product pathway by amplification
or atenuation of the enzymes associated with the limiting reactions. This type of global
modification process has been termed metabolic engineering, yet there does not exist any
simple way to determinethe flux of carbon through the prinary metabolic pathways.

Although the fluxes can be estimated, in theory, by constructing a set of differential
equationsto mode the concentrationsof the important metabolites in the network, these
models rely on the regulatory and kinetic properties of individual enzymesin the network.
These enzymes are poorly understood or not known at dl for most microbes. Even though
such models are useful, kinetic and regulatory information of individual enzymes in vitro
does not necessarily indicate how the overal biosynthetic network functionsas a whole in
vivo. As will be shown, models this detailed are not necessary to estimate the fluxesin the
network.

Experimentally, it is possible, to a limited extent, to calculate the carbon flux on the
basis of radiocarbon labeling experiments; however, these experiments often disrupt the
cellular environment, are difficult and expensive to conduct, and cannot be used in afer-
mentation environment due to the large volumes involved.

We have developed a methodology that determinesthe carbon flux through the primary
biosynthetic pathways employed for product synthesis from measurements of extracellular
metabolites only. This algorithm, presented in Section II, couples measurements of extra-
cellular metabolites with the known metabolic pathways of the microbe of interest, and a
pseudo-steady-state (PSS) approximation for intracellular metabolites is used to generate a
bioreaction network equation. Once constructed, singularity and sensitivity analysisroutines
determine if the system is well posed. Often these algebraic systems have more equations
than unknowns; consequently, redundancy analysis is used to check the consistency of
measurements and the PSS approximations. Least-squares or quadratic programming tech-
niques are employed to solve the equation and produce an estimate of the carbon flux.

The actual fermentation being studied is the production of lysine from glucose by
Corynebacterium glutamicum, This process is a good example of mutation/selection tech-
niquesemployed to construct production mutants free of feedback regulation by lysine and
threonine ON aspartate kinase. However, thesefermentationshave molar yields (moleslysine
produced per mole glucose consumed) of approximately 30 to 40%,' while the theoretical
naxi numis about 75%2 when NADPH, is assumed not to be equivalent to NADH, and
about 86%* when NADPH, and NADH, are assumed to be equivalent. The differencein
theoreticd yieldsis caused by CO, evolution in the pentose phosphate pathway (PPP) when
itis usd to generate NADPH,. Sinceessentially no other productsare produced and biomass
synthesi s is minimal, glucoseis simply being oxidized to carbon dioxide and water. Con-
sequently, it might be possible to redirect thiscarbon fl ux into lysine. Literature data from
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FIGURE 1. Bioreaction network for lysine production by glutamic acid bacteria.

alysine fermentation of Brevibacterium are used to illustrate the methodol ogy, since Brevi-
bacterium species that produce lysine or glutamate are basically identical to C. glutamicum
for our purposes.

II. METHODOLOGY

Consider the simplified biosynthetic reaction network for lysine production by glutamic
acid bacteriaillustrated in Figure 1. The estimation of the carbon flux through each reaction
in this network from extracellular measurementsis thedesired goal. Although thissimplified
network is used to represent cellular metabolism, it is quite obviousthat not al biosynthetic
reactions have been incorporated. There are thousands of such reactions; to include them
all would be impractical. The first step in the development of the methodology is to extract
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those reactionsthat represent the major carbon fluxes. This information can usually be found
in the literature.

To construct a simplified network, the main fueling and metabolite-generating bioreac-
tions, such as the Embden-Meyerhof-Parmas pathway, the PPP, the Krebs or tricarboxylic
acid (TCA) cycle, and the glyoxylate shunt, are assembled. In order to maintain observability
of the overall network from extracetlular measurements, the pathways that couple extracel-
lular metabolites (including the product) to the fueling reactions must be included. Since a
PSS approximation will be used for intracellular metabolites, regenerating reactionssuch as
those for ATP and NAD via the respiratory chain are included to insure that no intracellular
metabolite has a net production or consumption. Elaborateor ill-defined pathways, such as
biomass synthesisor maintenance requirements, must be expressed as lumped reactions (the
detailsof lumping will be explained in SectionIT.A). Finally, to minimize thedimensionality
of thesystem, only metabolitesthat areinvolved a branch pointsin the biosynthetic pathways
are considered in the network. For example, there are several metabolites between aspartyl-
semiadehyde (ASA) and lysine (Lys); however, they need not be considered, since they
comprise a nonbranching sequenceof reactionsthat must all proceed at the same rate if PSS
assumption is to be satisfied.

The reactions used for the lysine fermentation as well as the important metabolites are
presented in the Appendix and illustrated in Figure 1.

A. BIOMASS AND VAl NTENANCE EQUATIONS

Of the multitude of intracellular reactions, the mgjority lead to the synthesis of large
biomolecules needed for cell growth and maintenance. Although essential, the flux through
any one such reaction represents only a small fraction of the total carbon entering the cell.
The sum total of these reactions, however, cannot be neglected, for they represent the
pathways through which carbon and other essential nutrients are incorporated into biomol-
ecules. In our methodology, dl such reactions are lumped into one overall biomass equation
and coupled into the main fueling reactions.

Ingraham et al.* have shown that biomass can be synthesized from 12 precursor me-
tabolites, and the researchers have calculated the amounts required to form 1 g dry weight
of biomass, aswell asthe amounts of ATP, NADH,, and NADPH, required for biosynthesis.
Their andysisis similar to that of Stouthamer.® Even though the reported biomass yields
are for Escherichia coli, they are adequate approximationsfor C. glutamicum for the fol-
lowing two reasons. First, in most lysine fermentations biomass synthesis only requires
approximately 10 to 20% of the initial glucose, and the growth rate is quite small or zero
during lysine production. Consequently, the sensitivity of the flux estimateson the biomass
yields is quite small, especialy during lysine production. Second, we have been able to
duplicate the biomass yields reported by Ingraham et al.# for threonine and methionine to
within less than 5%. Therefore, the use of E. coli biomass yields for C. glutamicum is
warranted; however, this will probably not be true for al microorganisms and/or fermen-
tations. From the tables given by Ingraham, the lumped equation for biomass synthesisfor
C. glutamicumis shown in Table 1.

The ATP requirement in the lumped biomass equation is the theoretical amount and is
equivaent to an ATP yield of 28 g of biomass synthesized per mole of ATP consumed.
The lumped equation for biomassdoes not account for AT P consumption dueto maintenance,
futile cycles, transport costs, or the energy required to maintain concentration gradients
across the cell wall. Consequently, an excess amount of ATP is usually produced by the
fueling reactions. To maintain a PSS approximation for ATP, this excess is removed by
incorporating the following equation into the network for the conversionof ATP into ADP.

ATP— ADP 1)
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TABLE 1
Lumped Biomass Equation from
Ingraham’s Data’

Substrates (moles) Product s (moles)

GLC6P (0.0205)

FRUGP (0.0071)

RIB5P (0.0898)

EA4P (0.0361)

GAP (0.0129)

G3P (0.150)

AKG (0.058)

0OAA (0.107)

PEP (0.0519) Biomass (10
PYR (0.125) ADP (3.89)
ACCOA (0.327) NADP (1.37)
NH, (0.7%) NADH (0.312)
ATP (3.89)

NADPH (1.37)

NAD (0.312)

LEU (0.043)

MET (0.015)

THR (0.024)'

LYS (0.033)

GLUT (0.025)®

GLUM (0.025)y

Note: Mol wt of biomass = 100.

Auxotroph.
t  Pahway included.

Although the ATP balanceis not necessary for flux determination, Equation 1 isinformative
since it indicates how much excess ATP, above the theoretical, is produced by the cells.
For the lysine fermentation, a P/O ratio of 2 is used.

The reactions illustrated in Figure 1 and presented in the Appendix comprise the me-
tabolismof the cell for the production of lysine by glutamic acid bacteria. A similar approach
can be applied to any other organism for any product so long as the biochemistry is known.
For protein products, a lumped equation similar to the biomass equation would probably
have to be used.

Sinceit is desired to estimate the extent (i.e., the flux) of each reaction in the network
from extracellular measurements only, a metabolite balance based on the biochemistry is
used to construct an algebraic equation for the metabolism of the cell. The development of
this equation, called the bioreaction network equation (BRNE), is described in the next
section and follows a similar approach establishedfor butyric acid bacteria by Papoutsakis®’
for the construction of the fermentation equation.

B. THE BIOREACTION NETWORK EQUATION

The extent or flux of each reaction listed in the Appendix is unknown and can be
represented as x; for the ith reaction in the network. The BRNE represents a metabolite
balance and is constructed by determining the time rate of change of each metabolitein the
network as afunction o all the unknown flows, x;, producingor consuming that metabolite.
For example, in the lysine fermentation the rate of production of pyruvate based on the
reactions given in the Appendix is

Tor = X — X3 + Xg — Xg — Xpg — 0.13x5 (2)
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F QURE2. Exampleof asingular reaction network.

The resulting set of equations for the rate of change of each metabolitein the network is
placed in matrix form as follows:

Ax =r 3)

where A is the bioreaction network matrix reflecting the assumed biochemistry, r is the
production rate vector for al the metabolites in the network, and x is the unknown flux
vector to be determined.

The A matrix is determined by the biochemistry of the microbe and the fermentation,
as described above, and has a dimension of m x n, where m is the number of metabolites
in the network, n is the number of reactions, and m = n. For the lysine fermentation,
m = 33 and n = 31.

1 Singularities

A solution to the BRNE will exist provided the A matrix is nonsingular. Singularities
in the A matrix may arise due to reaction dependence or network observability problems.
Consider, for example, the simplified network depicted in Figure 2. In this case, Reactions
1 and 2 are indistinguishable from the extracellular measurements of A and D, and the
resultingA matrix would be singular. Reactionsin the network that produce such singularities
must be either lumped together or removed; in the above example, both yield the same
result.

When the completeTCA cycleand theglyoxylateshunt are incorporated into the network
for lysine fermentation, a singularity arises indicating that the determination of carbon flux
distribution between these two branchesis not possible from available extracellular mea-
surements. It has been shown, however, that a-ketoglutarate dehydrogenase (EC 1.2.4.2)
of the TCA cycleis not activein glutamic acid bacteria® (shown as the dashed linein Figure
1). When this reaction is removed from the network, so is the singularity. Similarly, car-
boxylation reactions, such as the malate enzyme (EC 1.1.1.40), pyruvate carboxylase (EC
6.4.1. 1), oxaloacetate decarboxylase (EC 4.1.1.3), and phosphoenolpyruvatecarboxylase
and carboxykinase (EC 4.1.1.3 1 and 4.1.1.32), must be lumped into one reaction (Reaction
8 in the Appendix). It should also be pointed out that matrix singularities are one of the
nai N reasons that biosynthetic reactions are lumped into a single equation.

Once the bioreaction network natrix, A, is assembled and reactions that produce sin-
gularities lumped together or removed, the production rate vector, r, must be determined.

2. Production Rate Vector

Since biomass is treated as a product just like any other, each element of the r vector
representsthe timerate of changein total concentration of a metabolite in the network minus
the intracellular component of that metabolite which has already been accounted for in the
measurement of biomass, or
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dcr? . dac..
Iy et B ! ) = ——biomass
rj dt ; “"CJ a‘nd rbwma.s dt (4)
dct  dc! dc,,
| i + —_— ' . = biomass
r; It @ K1C; and T iomas __dt (&)

where C7 is the total concentration of metabolite j:(total moles of metabolite j per total
volumeof broth) and isequal to C¥ + C}, wherethe superscriptsE and | refer to extracellular
and intracellular components, respectively. The subscript j refers to dl metaboliteslisted in
the Appendix except for biomass, and p is the specific growth rate. Since it is desired to
base the methodology on measurements of extracellular metabolites only, a PSS (i.e.,
balanced growth) approximation is used for al intracellular metabolites, given by

dc!
b S ! .
— = uC; (6)

Consequently, after substitution of Equation 6 into Equation 5, the production rate vector,
r, smplifiesto

rn=20 for al intracellular metabolites
dct .
re= - for dl extracellular metabolites @)
! and biomass

that is, r; is set to zero for dl intracellular metabolites and r, is determined by measuring
the production rate of the extracellular component of metabolitek. Of course, dilution and
sampling effects on concentration data must be accounted for when appropriate. The BRNE
is now determined completely and can be solved.

Before presenting the solution, it is worth noting that the bioreaction network algorithm
(BRNA) does not require information concerning intracellular control mechanismsor kinetic
rate constants for reactions. The overall network is simply a metabolic balance governed by
the particular biochemistry of the microbe. Consequently, the only uncertainties are the
lumped equations and the PSS hypothesis, both of which are reasonable approximations.
Furthermore, Equation 6, the PSS approximation, need not be held to rigorously. As long
as r; for dl intracellular metabolites, given by Equation 5, is small compared to the fluxes
producing or consuming metabolitej, the estimated fluxes will be a vaid representation of
the true state of the cellular metabolism.

3. Solution and Sensitivity Analysis
The estimated flux vector, X, is given by the least squares solution® to the BRNE 3:

X = (ATA)"'A'r (8)
A unique solution exists to this equation, since A is of full rank and r is defined. Even
though asolution exists, it might be very sensitiveto slight perturbationsin the measurements,

r, or perturbationsin the biochemistry, A. As a first check, the condition number of the
system is calculated. The condition number is defined as

C(a) = |All - 1A% ®



212 Frontiersin Bioprocessing

wheref || is any matrix norm and A* is the pseudoinverse, given as
AY = (ATA) AT (10)

If C(A) issmadl (say <100. Euclidian norm), then the system is considered well posed;
however, if C(A) islarge (say >1000, Euclidian norm), then there are possible sensitivity
problemsthat should beinvestigated further (see Reference 9 for moredetailson thecondition
number). It should be noted that no measurements are needed for the determination of the
condition number, indicating that modifications to the biochemistry or new networks can
be tested for sensitivity problems without conducting experiments. The condition number
for the lysine fermentation is 62 based on the Euclidian norm.

The sensitivity of the solution with respect to biochemistry and measurementsis deter-
mined from the appropriate derivatives shown here:

T T T
X = (ATA)"[QA - (_BAA_ + AT i{l)(ATA)—lAT}r (11
day éﬂ;:;: da;; da,
ii_ = (ATAY-1AT
e (ATA)'A 12)

where A represents an m X n matrix whose ijth element isa 1 and all others 0. These
g

equations are Similar to those presented by Boot'® and can be used to isolate sensitivity
problems. Toremove such sensitivity problems, onemust again either lump reactionstogether
or remove them. Equation 12 alows one to determine which metabolites reguire accurate
measurement, since the derivative indicates how sensitive the solution is to a particular
measurement.

4. Redundancy Anaysis

This analysis follows the original work of Romagnoli and Stephanopoulos'™ and its
application to fermentation data discussed by Wang and Stephanopoulos.*> When the row
dimension of A, m, is greater than the column dimension, n, and the matrix is of full rank,
then there are more equations than unknowns, indicating an over-determined system and,
hence, the least squares solution. Them = n dependent equations can be used to check the
consistency of the measurements, the validity of the PSS hypothesis, and possibly other
assumptions.

Refemng to the above papers for a complete description of the gross error identification
methodology, the essentialsof the algorithm can be summarized asfollows. If the redundant
equations are satisfied by the available measurements, the latter are consistent with the
assumed bioreaction network structure and associated assumptions. If inconsistencies are
detected, the redundant equations may be used to identify the source of gross error among
the measurements and PSS assumptions. This is done by systematicallyeliiating, one a
atime, the measurements or steady-stateassumptionsand using one of the redundant equa-
tions to determine the eliminated measurement. The remaining redundant equations are used
to test the consistency of the resulting system of equations and measurements through the
calculation of a statistically balanced consistency index.'? A sharp decrease in the value of
the consistency index resulting from the elimination of a measurement or assumption is a
strong indication of the latter being a source of error, suggesting that it be dropped from
further consideration.

To implement the consistency analysis described by Wang and Stephanopoulos,'? the
independent equations of the BRNE must be removed and the resulting set of redundant
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equations placed in the form Br = O via the following procedure. Through Gauss elimi-
nation, the A matrix can be partitioned into an n x n upper diagonal matrix, U, and an
m — n X n zero matrix by multiplication of the appropriatem X m permutation matrix,
E. Equation 3 can then be expressed as

(YUl _ o _TJEr
EAx-[O]x—Er—[Ezr]

O =Er (13)

where E, is the lower part of the permutation matrix whose dimensionism — n x m.
Equation 13 is now in the appropriate form.

The net result of the consistency analysis is the ability to detect and isolate errors in
measurements, PSS approximations, and, to a limited extent, biochemistry.

Following the redundancy analysis and consistency tests, a final check of the PSS
approximation can be performed utilizing the reaction fluxes obtained from the solution of
Equation 3. These fluxes can be used to back calculate the apparent time rates of change
of al intracellular metabolites. The latter can then be compared to the fluxes of dl reactions
producing or consuming the corresponding metabolite. PSS will be a vaid approximation
for a metabalite if its rate of change is found to be small compared to the fluxes of the
reactions affecting that metabolite. If a PSS approximation is found to be invalid, further
information is needed on that particular metabolite in the form of additional measurements
or kinetic expressions. Such metabolites can aso be removed from the network, thereby
removing the PSS constraint, provided that this does not produce a singularity in A.

5. Additional Information

In general, the more knowledge that can be incorporated into the flux determination
algorithm, the more reliable the flux estimates will be. Thus far, we have not taken into
account the directionality of reactions. It is well known that some reactions are completely
reversible, while others are considered irreversible. Also, in rare cases a maximum rate
might be known for a particular reaction. In either case, directionality of areaction, or upper
bounds on reactionsrates, imposes inequality constraints on the BRNE of the type

Ax =1 subject to CxZb (14)

where C is the constraint matrix that dictates which reactions are constrained to be greater
than or equal to b, which is usually taken as the zero vector. This inequality constrained
least squares (ICLS) problem is not amenable to solution by analytical methods and must
be solved numerically. Liew'* describes a technique for solving ICLS problems. Simply
stated, a linearized equation is produced from the derivative of the quadratic least squares
equation, J = (AX — r)T(Ax — r), with respect to x. The linearized equation is solved by
a modification of the simplex method, which is but one of the many ways to solve such
guadratic programming problems.”* The solution to the ICLS problemis

X = (ATA)'ATr + (ATA)"'C™z (15)

where z is a numericaly determined k-dimensional dua vector.

It isemphasized that the constraintsshould not be used to overcomean ill-posed system,
but rather to fine tune the unconstrained solution to Equation 8. For example, if the solution
to Equation 8 produces a slightly negativeflow entering the PPP (i.e., ribulose-5-phosphate
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TABLE 2
Production Rates of Extracellular Metabolites'®

Production rate (mmeol/h/1)
Tie@®m Gluoose Biomass Lysne Oxygen CO,

0—12 -2.32 2.92 1.10 -12.5 13.4
1224 ~7.83* 3.66 2.28 -49.1 52.5
2436 —14.3 2.58 1.53 -55.6 59.5
36—48 -16.1 1.25 1238 -57.8 61.9

*  Glucose measurement not used due to inconsistency.

producing glucose-6-phosphate), then the above congtraints can be used to set this flow to
zero. ldeally, the constraintsshould not be violated for a perfectly posed system (i.e., z =
0), but thisis hard to achieve, and the constraints may add information that is not directly
qbtainable from the measurements.

For the lysine fermentation data, no constraints were violated; consequently, Equation
8 was used instead of Equation 15.

C. SUMMARY OF THE ALGORITHM

The following is a summary of the algorithm presented in the previous sections. For a
particular microbe and fermentation, one constructsthe primary biosynthetic pathways nec-
essary for product synthesis and energy production, including those pathways necessary to
generate the intermediate metabolites for the lumped biomass equation and those necessary
to regenerate intraceliular metabolites. These pathwayscan usualy befound in theliterature.
The ones for the lysine fermentation are illustrated in Figure 1 and listed in the Appendix.
These reactions are then placed in an equational form called the BRNE. The BRNE is then
tested for singularity and sensitivity problems. Once awell-posed system isaobtained (through
lumping, etc.), productionrates of dl extracellular metabolitesare measured experimentally
as a function of time to determine r and are checked for consistency. This vector is then
subgtituted into Equation 8 or 15, depending on whether system constraints are invoked, to
obtain an estimate, X, of the carbon flux through the primary pathways.

III. APPLICATIONS

The agorithm was tested with literature data reported by Erickson et al.*s for a batch
lysine fermentation of Brevibacterium (Species not reported), since it has been well established!®
that glutarnic-acid-producing strains of Brevibacterium and Corynebacterium have similar
biochemistry and should be classified under C. glutamicum. Data on the production rates
of biomass, lysine, and carbon dioxide and the consumption rates of glucose and oxygen
were used from that paper. These data, reported every 12 h for thefirst 48 h, are summarized
in Table 2. When these data were checked for consistency, it was found (see Reference 12)
that the calculated performance index was outside the 90% co  dence level for the O- to
12-h and 12- to 24-h time periods. When the glucose measurement was removed, the index
improved to within acceptablelimits; therefore, the glucose measurement was not used for
the first two time periods.

Upon subgtitution of the corrected rate data into Equation 8, the flux map through the
lysine bioreaction network of Figure I was generated, with the results shown in Table 3.
The reaction numbers refer to the reactions given in the Appendix and correspond to the
numbers listed on Figure 1.

To compare the estimateof the flux network with experimental data, we have cal culated
the percentageof glucoseentering the PPPfrom theflux estimate, assuming partial recycling
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TABLE 3
Esimated Fluxes for the Bioreaction Network in
mmol/h/]
Time periods (h)

Reaction n0. 0—12* 1224+ 2436 36—48
1 5.39 13.0 142 15.8
2 1.11 5.62 8.00 8.60
3 3.70 10.2 10.9 119
4 8.60 22.5 23.3 25.6
5 8.14 22.0 2.9 25.4
6 7.96 21.8 22.8 25.3
7 0.00 0.00 0.090 0.135
8 0.621 11.7 154 14.7
9 7.04 30.7 35.7 36.7

10 3.31 14.9 17.4 18.2
11 0.407 0.318 0.297 0.366
12 -1.17 -2.42 -2.03 -3.00
13 2.719 14.6 17.2 177
14 5.53 29.3 34.7 35.8
15 2.83 14.6 17.2 17.9
16 2.79 14.6 17.4 18.0
17 2.56 4.96 4.17 6.17
18 0.0958 0.0721 0.106 0.145
19 422 7.27 5.88 6.92
20 1.62 2.69 227 2.58
21 2.60 4.58 3.47 4.12
22 1.35 2.36 1.87 2.22
23 1.35 2.36 1.66 1.90
24 1.25 2.23 1.44 1.67
25 11.1 41.8 47.2 49.2
26 1.40 7.31 8.59 8.84
27 1.22 2.38 1.93 2.95
28 1.17 2.42 2.03 3.00
29 1.15 2.44 2.02 2.94
30 2.91 3.67 2.72 1.45
31 40.7 184 213 226

*  Glucose measurement not used.

of fructose-6-phosphate(F6P). It has been shown by radiolabeling experiments'’-*# that the
best method for calculating the fraction of glucose entering the PPP is to assume partia
recycling of F6P. This assumes that the fraction of F6P that is recycled back into the PPP
is the same as the fraction of glucosethat enters the PPP. From the network shown in Figure
1, the percentage of glucose entering the PPP, based on partial recycling, is given by

100(x, — x,)
Xy + X3 + Xy

PPP (%) = (16)

where x; represents the flux in reaction i, depicted in Figure 1 and listed in the Appendix.
Oishi and Aida'® have measured, using radiorespirometry,?® the percentage of glucose en-
tering the PPP for B. ammoniagenes in the stationary phase (i.e., no growth) and under
high biotin concentration (20 wg/1). The PPP (%) calculated from the flux estimates and
Equation 16 along with the measurementsof PPP (%) of Qishi and Aida arelisted in Table
4.

The conditions under which Oishi and Aida conducted their experiments correspond to
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TABLE4
Estimated and Measured Glucose
Entering the Pentose Phosphate
Pathway

Percent Glucose Entering PPP

Time (h) PPP (%) PPP (%)*
0—12 54¢ —
1224 4 —
24—36 35 -
36—48 37 38¢

Calculated by partial recycle of F6P, Equa-
tion 16.

* [t umfrom Oishi and Aida.”

¢ Glucose measurement not used.

4 Resting cells, with 20 g/l biotin.

the conditions that prevail during the end of the fermentation, i.e., stationary phase and
high biotin concentration. From Table 4 we can see that the estimated result of 35 to 37%
glucoseentering the PPP correspondsextremely well with the experimentally measured value
of 38% for cdls in stationary phase. This indicates that the estimated flux obtained from
the BRNA does represent the true state of the metabolismin the cell for the PPP.

Furthermore, there are some other interesting features of this flux network. Reaction 31
indicates the amount of excess ATP produced over that quantity theoretically required. This
flow is an order of magnitude greater than any other flux in the network and represents
approximately 64, 82, 85, and 86% of ATP produced for the O- to 12-h, 12- to 24-h, 24-
to 36-h, and 36- to 48-h time periods, respectively. This finding indicates that most of the
glucoseconsumed by the cellsis simply oxidized to carbon dioxide and water, and it accounts
for the large flux of carbon cycling through the modified TCA cycle (.e., the TCA cycle
plus the glyoxylate shunt and the decarboxylation reaction) and the low lysine yield (20%
molar). Consequently, if thisflux can be redirected to oxal oacetate(OAA), the lysineyield
may be increased.

For glutamic acid productionit has been proposed that Reaction 11 generatesthe required
NADPH, for Reaction 17; however, this cannot be true for lysine production since, based
on the flux network, Reaction 11 is very smal compared to Reaction 17. Reaction 11 in
this case is not large, since a-ketoglutaric acid is produced from glutamate in the lysine
reactions (see Reactions 27 and 29); consequently, NADPH, needed for Reaction 17 must
be generated via the PPP, which could be another limiting reaction in the production of
lysine.

It should also be noted that the decarboxylation reaction (Reaction 8) is essential when
the glyoxylate shunt is functioning, which is reasonablesince Reaction 8 is used to complete
the modified TCA cycle, as postulated by Shiio et al.?

IVv. SUMMARY

The primary metabolic pathways of a cell have been represented by a linear equation,
termed the BRNE. Several routines have been devel oped to check the singularity, sensitivity,
and consistency of the model, and techniques have been described as meansto correct these
problemswhen they arise, such aslumpingor removal of reactionsand removal of statistically
inconsistent measurements.
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The biochemisgtry of lysine fermentationfor glutarnic acid bacteria has been constructed
based on availableliteraturedata. With the carboxylation reactionslumped into one reaction
(Reaction 8), a-ketoglutarate dehydrogenasein the TCA cycle removed, excess ATP re-
moved via Reaction 31, and biomass synthesis represented as one reaction (Table 1), the
bioreaction network matrix A is nonsingular and hasadimensionof 33 x 31and acondition
number of 62. The corresponding biochemical reactionsare listed in the Appendix.

The fluxes generated by the unconstrained solution, Equation 8, from Erickson's data
appear reasonable, and the percentage of glucose entering the PPP calculated from the flux
estimates correlateswel | with experimental data presented by Oishi and Aida.'® It also appears
that the low lysine yield of 20% molar might be caused by overproduction of ATP by the
oxidative pathways of glutamic acid bacteria.
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APPENDIX: BIOCHEMISTRY AND METABOLITES

The following reactions are used to describe the metabolism of glutarnic acid bacteria
for lysine fermentation. Also given are the important metabolites considered. From this
information the bioreaction network matrix, A, is constructed.

A. BIOCHEMICAL REACTIONS
Embden-M eyerhof-Parnas Pathway
.GLC + ATP— GLC6P T ADP
GLC6P <« FRU6P
FRU6P T ATP— 2GAP + ADP
.GAP *+ ADP + NAD — NADH * G3P + ATP
. G3P < PEP *+ H,0
. PEP + ADP— ATP T PYR
. PYR T NADH < LAC *+ NAD

NOUIAWNE

Carboxylation Reactions
8. OAA — PYR *+ CO,

TCA Cycle
9. PYR + COA T NAD — ACCOA + CO, + NADH
10. ACCOA + OAA T H,0 < ISOCIT + COA
11. ISOCIT + NADP < AKG *+ NADPH + CO,
12. SUCCOA T ADP < SUC + COA + ATP
13. SUC T H,0 + FAD < MAL + FADH
14. MAL T NAD < OAA + NADH

Glyoxylate Shunt
15. ISOCIT « SUC + GLYOX
16. ACCOA *+ GLYOX + H,0 — MAL t COA

* See Appendix Section B for abbreviation designations.
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Glutamate and Glutamine Production
17. NH, + AKG *+ NADPH < GLUT * H,0 + NADP
18. GLUT + NH, + ATP— GLUM + ADP

Pentose Phosphate Cycle

19. GLC6P T H,0 T 2 NADP — RIBUSP t CO, T 2 NADPH
20. RIBUSP « RIB5P

21. RIBUSP < XYL5P

22. XYLSP * RIB5P < SED7P + GAP

23. SED7P T GAP < FRU6P T E4P

24. XYL5P + E4P « FRU6P T GAP

ATP Generation; P/IO = 2
25. 2NADH + O, + 4 ADP — 2 H,O + 4 ATP + 2 NAD
26.2 FADH + 0, + 2ADP— 2H,0 + 2ATP + 2FAD

Aspartate Family

27. OAA T GLUT « ASP + AKG

28. ASP + NADPH + ATP— ASA + ADP + NADP

29. ASA + PYR + NADPH + SUCCOA + GLUT—-, SUC *+ AKG * CO, t H,0
+ LYS + NADP + COA

Biomass Production; Assume Mol Wt (Biomass) = 100

30. 0.0205 GLC6P + 0.00709 FRU6P + 0.0898 RIBSP + 0.0361 E4P T 0.0129 GAP
+ 0.15 G3P + 0.0519 PEP *+ 0.125 PYR * 0.327 ACCOA *+ 0.058 AKG +
0.107 OAA * 0.0326 LYS * 0.796 NH, + 0.025 GLUT + 0.025 GLUM * 3.89
ATP + 1.37 NADPH + 0.312 NAD = BIOMASS + 3.89 ADP T 1.37 NADP
+ 0.312 NADH

Unaccounted for ATP Requirements
31. ATP— ADP

B. LIST OF IMPORTANT METABOLITES
Each metabolite listed below corresponds to one element of the r vector.

1. Acetyl coenzyme A (ACCOA) 17. Glyoxylate (GLY OX)

2. aKetoglutarate (AKG) 18. Isocitrate (ISOCIT)

3. Aspartate semialdehyde (ASA) 19. Lactate (LAC)

4. Aspartate (ASP) 20. Lysine (LYS)

5. Adenosine 5'-triphosphate (ATP) 21. Malate (MAL)

6. BIOMASS 22. NADH

7. CO, 23. NADPH

8. Erythrose-4-phosphate (E4P) 24. O,

9. Flavin adenine dinucleotide (FADH)  25. Oxalocetate (OAA)
10. Fructose-6-phosphate (FRU6P) 26. Phosphoenolpyruvate (PEP)

11. 3-Phosphoglycerate (G3P) 27. Pyruvate (PYR)

12. Glyceraidehyde-3-phosphate (GAP)  28. Ribose-5-phosphate (RIB5P)
13. Glucose (GLC) 29. Rubulose-5-phosphate (RIBUSP)
14. Glucose-6-phosphate (GLC6P) 30. Sedoheptd ose-7-phosphate (SED7P)
15. Glutamine (GLUM) 31. Succinate (SUC)
16. Glutamate (GLUT) 32. Succinyl CoA (SUCCOA)

33. Xylulose-5-phosphate (XYL5P)
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