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I. INTRODUCTION 

Mutation/selection or genetic engineering techniques employed to increase product yield 
in fermentations often only alleviate metabolic regulation occurring at or near the end of a 
biosynthetic chain that leads to that particular product. However, microorganisms have 
evolved biosynthetic pathways to produce energy and metabolites necessary for growth and 
replication, not for the overproduction of specific biocompounds. Consequentiy , not only 
does the regulation of the product of interest need to be removed, but also the main fueling 
reactions of the cell must be rerouted in such a way as to channel the main carbon flux into 
the biosynthetic pathway required for product synthesis. 

To achieve, or at least approach, theoretical product yields in an optimal manner, one 
must know how carbon partitioning occurs between the fueling reactions, biomass, and 
product. This necessitates the development of means to determine the partitioning of carbon 
flux between the primary biosynthetic pathways. Once acquired, this information can be 
used to rechannel the carbon in the fueling reactions into the product pathway by amplification 
or attenuation of the enzymes associated with the limiting reactions. This type of global 
modification process has been termed metabolic engineering, yet there does not exist any 
simple way to determine the flux of carbon through the primary metabolic pathways. 

Although the fluxes can be estimated, in theory, by constructing a set of differential 
equations to model the concentrations of the important metabolites in the network, these 
models rely on the regulatory and kinetic properties of individual enzymes in the network. 
These enzymes are poorly understood or not known at all for most microbes. Even though 
such models are useful, kinetic and regulatory information of individual enzymes in vitro 
does not necessarily indicate how the overall biosynthetic network functions as a whole in 
vivo. As will be shown, models this detailed are not necessary to estimate the fluxes in the 
network. 

Experimentally, it is possible, to a limited extent, to calculate the carbon flux on the 
basis of radiocarbon labeling experiments; however, these experiments often disrupt the 
cellular environment, are difficult and expensive to conduct, and cannot be used in a fer- 
mentation environment due to the large volumes involved. 

We have developed a methodology that determines the carbon flux through the primary 
biosynthetic pathways employed for product synthesis from measurements of extracellular 
metabolites only. This algorithm, presented in Section II, couples measurements of extra- 
cellular metabolites with the known metabolic pathways of the microbe of interest, and a 
pseudo-steady-state (PSS) approximation for intracellular metabolites is used to generate a 
bioreaction network equation. Once constructed, singularity and sensitivity analysis routines 
determine if the system is well posed. Often these algebraic systems have more equations 
than unknowns; consequently, redundancy analysis is used to check the consistency of 
measurements and the PSS approximations. Least-squares or quadratic programming tech- 
niques are employed to solve the equation and produce an estimate of the carbon flux. 

The actual fermentation being studied is the production of lysine from glucose by 
Corynebacterium glutamicum. This process is a good example of mutation/selection tech- 
niques employed to construct production mutants free of feedback regulation by lysine and 
thru,nint on aspartate kinase. However, these fermentations have molar yields (moles lysine 
produced per mole glucose consumed) of approximately 30 to 4056,' while the theoretical 
maximum is about 7596, when NADPH, is assumed not to be equivalent to NADH, and 
about 86%3 when NADPH, and NADH, are assumed to be equivalent. The difference in 
theoretical yields is caused by CO, evolution in the pentose phosphate pathway (PPP) when 
it is used to generate NADPH,. Since essentially no other products an produced and biomass 
synthesis is minimal, glucose is simply being oxidized to carbon dioxide and water. Con- 
sequently, it might be possible to redirect this carbon flux into lysine. Literature data from 
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RGURE 1 .  Biorcaction network for lysine production by glutamic acid bacteria. 

a lysine fermentation of Brevibacterium are used to illustrate the methodology, since Brevi- 
bacterium species that produce lysine or glutamate are basically identical to C. glutamicwn 
for our purposes. 

Consider the simplified biosynthetic reaction network for lysine production by glutamic 
acid bacteria illustrated in Figure 1. The estimation of the carbon flux through each reaction 
in this network from extracellular measurements is the desired goal. Although this simplified 
network is used to represent cellular metabolism, it is quite obvious that not all biosynthetic 
reactions have been incorporated. There are thousands of such reactions; to include them 
all would be impractical. The first step in the development of the methodology is to extract 
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those reactions that represent the major carbon fluxes. This information can usually be found 
in the literature. 

To construct a simplified network, the main fueling and metabolite-generating bioreac- 
tions, such as the Embden-Meyerhof-Parnas pathway, the PPP, the Krebs or tricarboxylic 
acid (TCA) cycle, and the glyoxylate shunt, are assembled. In order to maintain obsemability 
of the overall network from exmcellular measurements, the pathways that couple extracel- 
lular metabolites (including the product) to the fueling reactions must be included. Since a 
PSS approximation will be used for intracellular metabolites, regenerating reactions such as 
those for ATP and NAD via the respiratory chain are included to insure that no intracellular 
metabolite has a net production or consumption. Elaborate or ill-defined pathways, such as 
biomass synthesis or maintenance requirements, must be expressed as lumped reactions (the 
details of lumping will be explained in Section 1I.A). Finally, to minimize the dimensionality 
of the system, only metabolites that are involved at branch points in the biosynthetic pathways 
are considered in the network. For example, there are several metabolites between aspartyl- 
semialdehyde (ASA) and lysine (Lys); however, they need not be considered, since they 
comprise a nonbranching sequence of reactions that must all proceed at the same rate if PSS 
assumption is to be satisfied. 

The reactions used for the lysine fermentation as well as the important metabolites are 
presented in the Appendix and illustrated in Figure 1. 

A. BIOMASS AND MAINTENANCE EQUATIONS 
Of the multitude of intracellular reactions, the majority lead to the synthesis of large 

biomolecules needed for cell growth and maintenance. Although essential, the flux through 
any one such reaction represents only a small fraction of the total carbon entering the cell. 
The sum total of these reactions, however, cannot be neglected, for they represent the 
pathways through which carbon and other essential nutrients are incorporated into biomol- 
ecules. In our methodology, all such reactions are lumped into one overall biomass equation 
and coupled into the main fueling reactions. 

Ingraham et aL4 have shown that biomass can be synthesized from 12 precursor me- 
tabolites, and the researchers have calculated the amounts required to form 1 g dry weight 
of biomass, as well as the amounts of ATP, NADH,, and NADPH, required for biosynthesis. 
Their analysis is similar to that of Sto~tharner.~ Even though the reported biomass yields 
are for Escherichia coli, they are adequate approximations for C. gluramicum for the fol- 
lowing two reasons. First, in most lysine fermentations biomass synthesis only requires 
approximately 10 to 20% of the initial glucose, and the growth rate is quite small or zero 
during lysine production. Consequently, the sensitivity of the flux estimates on the biomass 
yields is quite small, especially during lysine production. Second, we have been able to 
duplicate the biomass yields reported by Ingraham et al.' for threonine and methionine to 
within less than 5%. Therefore, the use of E. coli biomass yields for C. glutamicum is 
warranted; however, this will probably not be true for all microorganisms and/or fermen- 
tations. From the tables given by Ingraham, the lumped equation for biomass synthesis for 
C. glutamicum is shown in Table 1. 

The ATP requirement in the lumped biomass equation is the theoretical amount and is 
equivalent to an ATP yield of 28 g of biomass synthesized per mole of ATP consumed. 
The lumped equation for biomass does not account for ATP consumption due to maintenance, 
futile cycles, transport costs, or the energy required to maintain concentration gradients 
across the cell wall. Consequently, an excess amount of ATP is usually produced by the 
fueling reactions. To maintain a PSS approximation for ATP, this excess is removed by 
incorporating the following equation into the network for the conversion of ATP into ADP: 

ATP -, ADP (1) 



TABLE 1 
Lumped Biomass Equation from 

Ingraham's Data4 

Substrates (moles) Products (moles) 

GLC6P (0.0205) 
FRU6P (0.007 1 ) 
RIBSP (0.0898) 
E4P (0.0361) 
GAP (0.0129) 
G3P (0.150) 
AKG (0.058) 
OAA (0.107) 
PEP (0.05 19) Biomass (1 .O) 
PYR (0.125) ADP (3.89) 
ACCOA (0.327) NADP (1.37) 
NH, (0.7%) NADH (0.312) 
ATP (3.89) 
NADPH (1.37) 
NAD (0.312) 
LEU (0.043)' 
MET (0.015)' 
THR (0.024)' 
LYS (0.033)b 
GLUT (0.025)b 
GLUM (0.025)b 

Note: Mol wt of biomass = 100. 

Auxotroph. 
Pathway included. 

Although the ATP balance is not necessary for flux determination, Equation 1 is informative 
since it indicates how much excess ATP, above the theoretical, is produced by the cells. 
For the lysine fermentation, a PI0 ratio of 2 is used. 

The reactions illustrated in Figure 1 and presented in the Appendix comprise the me- 
tabolism of the cell for the production of lysine by glutarnic acid bacteria. A similar approach 
can be applied to any other organism for any product so long as the biochemistry is known. 
For protein products, a lumped equation similar to the biomass equation would probably 
have to be used. 

Since it is desired to estimate the extent (i.e., the flux) of each reaction in the network 
from extracellular measurements only, a metabolite balance based on the biochemistry is 
used to construct an algebraic equation for the metabolism of the cell. The development of 
this equation, called the bioreaction network equation (BRNE), is described in the next 
section and follows a similar approach established for butyric acid bacteria by Papoutsakis6.' 
for the construction of the fermentation equation. 

B. THE BIOREACTION NETWORK EQUATION 
The extent or flux of each reaction listed in the Appendix is unknown and can be 

represented as xi for the ith reaction in the network. The BRNE represents a metabolite 
balance and is constructed by determining the time rate of change of each metabolite in the 
network as a function of all the unknown flows, xi, producing or consuming that metabolite. 
For example, in the lysine fermentation the rate of production of pyruvate based on the 
reactions given in the Appendix is 
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FIGURE 2. Example of a singular reaction network. 

The resulting set of equations for the rate of change of each metabolite in the network is 
placed in matrix form as follows: 

where A is the bioreaction network matrix reflecting the assumed biochemistry, r is the 
production rate vector for all the metabolites in the network, and x is the unknown flux 
vector to be determined. 

The A matrix is determined by the biochemistry of the microbe and the fermentation, 
as described above, and has a dimension of m x n, where m is the number of metabolites 
in the network, n is the number of reactions, and m n. For the lysine fermentation, 
m = 33andn = 31. 

1. Singularities 
A solution to the BRNE will exist provided the A matrix is nonsingular. Singularities 

in the A matrix may arise due to reaction dependence or network observability problems. 
Consider, for example, the simplified network depicted in Figure 2. In this case, Reactions 
1 and 2 are indistinguishable from the extracellular measurements of A and D, and the 
resulting A matrix would be singular. Reactions in the network that produce such singularities 
must be either lumped together or removed; in the above example, both yield the same 
result. 

When the complete TCA cycle and the glyoxylate shunt are incorporated into the network 
for lysine fermentation, a singularity arises indicating that the determination of carbon flux 
distribution between these two branches is not possible from available extracellular mea- 
surements. It has been shown, however, that a-ketoglutarate dehydrogenase (EC 1.2.4.2) 
of the TCA cycle is not active in glutamic acid bacteria8 (shown as the dashed line in Figure 
1). When this reaction is removed from the network, so is the singularity. Similarly, car- 
boxylation reactions, such as the malate enzyme (EC 1.1.1 A O ) ,  pyruvate carboxylase (EC 
6.4.1. l ) ,  oxdoacetate decarboxylase (EC 4.1.1.3), and phosphoenolpyruvate carboxylase 
and carboxykinase (EC 4.1.1.3 1 and 4.1.1.32), must be lumped into one reaction (Reaction 
8 in the Appendix). It should also be pointed out that matrix singularities are one of the 
main reasons that biosynthetic reactions are lumped into a single equation. 

Once the bioreaction network matrix, A, is assembled and reactions that produce sin- 
gularities lumped together or removed, the production rate vector, r, must be determined. 

2. Production Rate Vector 
Since biomass is treated as a product just like any other, each element of the r vector 

represents the time rate of change in total concentration of a metabolite in the network minus 
the intracellular component of that metabolite which has already been accounted for in the 
measurement of biomass, or 



where is the total concentration of metabolite j*(total moles of metabolite j per total 
volume of broth) and is equal to CF + Cj, where the superscripts E and I refer to extracellular 
and intracellular components, respectively. The subscript j refers to all metabolites listed in 
the Appendix except for biomass, and is the specific growth rate. Since it is desired to 
base the methodology on measurements of extracellular metabolites only, a PSS (i.e., 
balanced growth) approximation is used for all intracellular metabolites, given by 

Consequently, after substitution of Equation 6 into Equation 5, the production rate vector, 
r, simplifies to 

ri = 0 for all intracellular metabolites 

dCf 
r, = - for all extracellular metabolites 

dl (7) 
and biomass 

that is, ri is set to zero for all intracellular metabolites and r, is determined by measuring 
the production rate of the extracellular component of metabolite k. Of course, dilution and 
sampling effects on concentration data must be accounted for when appropriate. The BRNE 
is now determined completely and can be solved. 

Before presenting the solution, it is worth noting that the bioreaction network algorithm 
(BRNA) does not require information concerning intracellular control mechanisms or kinetic 
rate constants for reactions. The overall network is simply a metabolic balance governed by 
the particular biochemistry of the microbe. Consequently, the only uncertainties are the 
lumped equations and the PSS hypothesis, both of which are reasonable approximations. 
Furthermore, Equation 6, the PSS approximation, need not be held to rigorously. As long 
as rj for all intracellular metabolites, given by Equation 5, is small compared to the fluxes 
producing or consuming metabolite j, the estimated fluxes will be a valid representation of 
the true state of the cellular metabolism. 

3. Solution and Sensitivity Analysis 
The estimated flux vector, i, is given by the least squares solution9 to the BRNE 3: 

A unique solution exists to this equation, since A is of full rank and r is defined. Even 
though a solution exists, it might be very sensitive to slight perturbations in the measurements, 
r, or perturbations in the biochemistry, A. As a first check, the condition number of the 
system is calculated. The condition number is defined as 
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where 11 11 is any matrix norm and A" is the pseudoinverse, given as 

AY = (ATA)- IAT (10) 

If C(A) is small (say <loo, Euclidian norm), then the system is considered well posed; 
however, if C(A) is large (say > 1000, Euclidian norm), then there are possible sensitivity 
problems that should be investigated further (see Reference 9 for more details on the condition 
number). It should be noted that no measurements are needed for the determination of the 
condition number, indicating that modifications to the biochemistry or new networks can 
be tested for sensitivity problems without conducting experiments. The condition number 
for the lysine fermentation is 62 based on the Euclidian norm. 

The sensitivity of the solution with respect to biochemistry and measurements is deter- 
mined from the appropriate derivatives shown here: 

as aAT aAT - = (AT*)-' [- - (-A + AT %) (ATA) -)AT] r 
da,  da,, da, duo 

a A 
where - represents an m X n matrix whose ijth element is a 1 and all others 0. These 

doii 
equationsoare similar to those presented by Bootlo and can be used to isolate sensitivity 
problems. To remove such sensitivity problems, one must again either lump reactions together 
or remove them. Equation 12 allows one to determine which metabolites require accurate 
measurement, since the derivative indicates how sensitive the solution is to a particular 
measurement. 

4. Redundancy Analysis 
This analysis follows the original work of Romagnoli and Stephanopoulos" and its 

application to fermentation data discussed by Wang and Stephanopo~los.'~ When the row 
dimension of A, m, is greater than the column dimension, n,  and the matrix is of full rank, 
then there are more equations than unknowns, indicating an over-determined system and, 
hence, the least squares solution. The m - n dependent equations can be used to check the 
consistency of the measurements, the validity of the PSS hypothesis, and possibly other 
assumptions. 

Refemng to the above papers for a complete description of the gross error identification 
methodology, the essentials of the algorithm can be summarized as follows. If the redundant 
equations are satisfied by the available measurements, the latter are consistent with the 
assumed bioreaction network structure and associated assumptions. If inconsistencies are 
detected, the redundant equations may be used to identify the source of gross error among 
the measurements and PSS assumptions. This is done by systematically e l i i a t i n g ,  one at 
a time, the measurements or steady-state assumptions and using one of the redundant equa- 
tions to determine the eliminated measurement. The remaining redundant equations are used 
to test the consistency of the resulting system of equations and measurements through the 
calculation of a statistically balanced consistency index. l2 A sharp decrease in the value of 
the consistency index resulting from the elimination of a measurement or assumption is a 
strong indication of the latter being a source of error, suggesting that it be dropped from 
further consideration. 

To implement the consistency analysis described by Wang and Stephanopo~los,'~ the 
independent equations of the BRNE must be removed and the resulting set of redundant 



equations placed in the form Br = 0 via the following procedure. Through Gauss elirni- 
nation, the A matrix can be partitioned into an n X n upper diagonal matrix, U, and an 
m - n X n zero matrix by multiplication of the appropriate m X m permutation matrix, 
E. Equation 3 can then be expressed as 

where E, is the lower part of the permutation matrix whose dimension is m - n x m. 
Equation 13 is now in the appropriate form. 

The net result of the consistency analysis is the ability to detect and isolate errors in 
measurements, PSS approximations, and, to a limited extent, biochemistry. 

Following the redundancy analysis and consistency tests, a final check of the PSS 
approximation can be performed utilizing the reaction fluxes obtained from the solution of 
Equation 3. These fluxes can be used to back calculate the apparent time rates of change 
of all intracellular metabolites. The latter can then be compared to the fluxes of all reactions 
producing or consuming the corresponding metabolite. PSS will be a valid approximation 
for a metabolite if its rate of change is found to be small compared to the fluxes of the 
reactions affecting that metabolite. If a PSS approximation is found to be invalid, further 
information is needed on that particular metabolite in the form of additional measurements 
or kinetic expressions. Such metabolites can also be removed from the network, thereby 
removing the PSS constraint, provided that this does not produce a singularity in A. 

5. Additional Information 
In general, the more knowledge that can be incorporated into the flux determination 

algorithm, the more reliable the flux estimates will be. Thus far, we have not taken into 
account the directionality of reactions. It is well known that some reactions are completely 
reversible, while others are considered irreversible. Also, in rare cases a maximum rate 
might be known for a particular reaction. In either case, directionality of a reaction, or upper 
bounds on reactions rates, imposes inequality constraints on the BRNE of the type 

Ax = r subject to Cx B b (14) 

where C is the constraint matrix that dictates which reactions are constrained to be greater 
than or equal to b, which is usually taken as the zero vector. This inequality constrained 
least squares (ICLS) problem is not amenable to solution by analytical methods and must 
be solved numerically. Liew13 describes a technique for solving ICLS problems. Simply 
stated, a linearized equation is produced from the derivative of the quadratic least squares 
quation, J = (Ax - r ) T ( A ~  - r), with respect to x. The linearized equation is solved by 
a modification of the simplex method, which is but one of the many ways to solve such 
quadratic programming problems." The solution to the ICLS problem is 

where z is a numerically determined &-dimensional dual vector. 
It is emphasized that the constraints should not be used to overcome an ill-posed system, 

but rather to fine tune the unconstrained solution to Equation 8. For example, if the solution 
to Equation 8 produces a slightly negative flow entering the PPP (i.e., ribulose-5-phosphate 
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TABLE 2 
Production Rates of Extracellular Metabolites15 

Production rate Immollhll~ 
- -- 

Tie (h) Glucose Biomass Lysine Oxygen CO, 

Glucose measurement not used due to inconsistency. 

producing glucose-6-phosphate), then the above constraints can be used to set this flow to 
zero. Ideally, the constraints should not be violated for a perfectly posed system (i.e., z = 
O), but this is hard to achieve, and the constraints may add information that is not directly 
qbtainable from the measurements. 

For the lysine fermentation data, no constraints were violated; consequently, Equation 
8 was used instead of Equation 15. 

C. SUMMARY OF THE ALGORITHM 
The following is a summary of the algorithm presented in the previous sections. For a 

particular microbe and fermentation, one constructs the primary biosynthetic pathways nec- 
essary for product synthesis and energy production, including those pathways necessary to 
generate the intermediate metabolites for the lumped biomass equation and those necessary 
to regenerate intracellular metabolites. These pathways can usually be found in the literature. 
The ones for the lysine fermentation are illustrated in Figure 1 and listed in the Appendix. 
These reactions are then placed in an equational form called the BRNE. The BRNE is then 
tested for singularity and sensitivity problems. Once a well-posed system is obtained (through 
lumping, etc.), production rates of all extracellular metabolites are measured experimentally 
as a function of time to determine r and are checked for consistency. This vector is then 
substituted into Equation 8 or 15, depending on whether system constraints are invoked, to 
obtain an estimate, f, of the carbon flux through the primary pathways. 

The algorithm was tested with literature data reported by Erickson et al.lS for a batch 
lysine fermentation of Brevibacrenwn (species not reported), since it has been well establishedI6 
that glutarnic-acid-producing strains of Brevibacterium and Corynebacterium have similar 
biochemistry and should be classified under C. glutamicum. Data on the production rates 
of biomass, lysine, and carbon dioxide and the consumption rates of glucose and oxygen 
were used from that paper. These data, reported every 12 h for the first 48 h, are summarized 
in Table 2. When these data were checked for consistency, it was found (see Reference 12) 
that the calculated performance index was outside the 90% co

nfi

dence level for the 0- to 
12-h and 12- to 24-h time periods. When the glucose measurement was removed, the index 
improved to within acceptable limits; therefore, the glucose measurement was not used for 
the first two time periods. 

Upon substitution of the corrected rate data into Equation 8, the flux map through the 
lysine bioreaction network of Figure 1 was generated, with the results shown in Table 3. 
The reaction numbers refer to the reactions given in the Appendix and correspond to the 
numbers listed on Figure 1. 

To compare the estimate of the flux network with experimentit1 data, we have calculated 
the percentage of glucose entering the PPP from the flux estimate, assuming partial recycling 



TABLE 3 
Estimated Fluxes for the Bioreaction Network in 

rnrnol/h/l 

Reaction no. &12* 

Glucose measurement not used. 

of fructose-6-phosphate (F6P). It has been shown by radiolabeling  experiment^^'.'^ that the 
best method for calculating the fraction of glucose entering the PPP is to assume partial 
recycling of F6P. This assumes that the fraction of F6P that is recycled back into the PPP 
is the same as the fraction of glucose that enters the PPP. From the network shown in Figure 
1, the percentage of glucose entering the PPP, based on partial recycling, is given by 

100(xl  - xd 
PPP (%) = 

x,  + x, + x2.4 

where xi represents the flux in reaction i, depicted in Figure 1 and listed in the Appendix. 
Oishi and Aida19 have measured, using radi~respirometry,~~ the percentage of glucose en- 
tering the PPP for B. amniagenes  in the stationary phase (i.e., no growth) and under 
high biotin concentration (20 pgfl). The PPP (%) calculated from the flux estimates and 
Equation 16 along with the measurements of PPP (9%) of Oishi and Aida are listed in Table 
4. 

The conditions under which Oishi and Aida conducted their experiments correspond to 
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TABLE 4 
Estimated and Measured Glucose 
Entering the Pentose Phosphate 

Pathway 

Percent Glucose Entering PPP 

Time (h) PPP (I)' PPP (%)b 

' Calculated by partial recycle of F6P, Equa- 
tion 16. 
Datum from Oishi and Aida.19 
Glucose measurement not used. 
Resting cells, with 20 pgll biotin. 

the conditions that prevail during the end of the fermentation, i.e., stationary phase and 
high biotin concentration. From Table 4 we can see that the estimated result of 35 to 37% 
glucose entering the PPP corresponds extremely well with the experimentally measured value 
of 38% for cells in stationary phase. This indicates that the estimated flux obtained from 
the BRNA does represent the true state of the metabolism in the cell for the PPP. 

Furthermore, there are some other interesting features of this flux network. Reaction 31 
indicates the amount of excess ATP produced over that quantity theoretically required. This 
flow is an order of magnitude greater than any other flux in the network and represents 
approximately 64, 82, 85, and 86% of ATP produced for the 0- to 12-h, 12- to 24-h, 24- 
to 36-h, and 36- to 48-h time periods, respectively. This finding indicates that most of the 
glucose consumed by the cells is simply oxidized to carbon dioxide and water, and it accounts 
for the large flux of carbon cycling through the modified TCA cycle (i.e., the TCA cycle 
plus the glyoxylate shunt and the decarboxylation reaction) and the low lysine yield (20% 
molar). Consequently, if this flux can be redirected to oxaloacetate (OAA), the lysine yield 
may be increased. 

For glutamic acid production it has been proposed that Reaction 11 generates the required 
NADPH, for Reaction 17: however, this cannot be true for lysine production since, based 
on the flux network, Reaction 11 is very small compared to Reaction 17. Reaction 11 in 
this case is not large, since a-ketoglutaric acid is produced from glutamate in the lysine 
reactions (see Reactions 27 and 29); consequently, NADPH, needed for Reaction 17 must 
be generated via the PPP, which could be another limiting reaction in the production of 
lysine. 

It should also be noted that the decarboxylation reaction (Reaction 8) is essential when 
the glyoxylate shunt is functioning, which is reasonable since Reaction 8 is used to complete 
the modified TCA cycle, as postulated by Shiio et al.*I 

IV. SUMMARY 

The primary metabolic pathways of a cell have been represented by a linear equation, 
termed the BRNE. Several routines have been developed to check the singularity, sensitivity, 
and consistency of the model, and techniques have been described as means to correct these 
problems when they arise, such as lumping or removal of reactions and removal of statistically 
inconsistent measurements. 



The biochemistry of lysine fermentation for glutarnic acid bacteria has been constructed 
based on available literature data. With the carboxylation reactions lumped into one reaction 
(Reaction 8), a-ketoglutarate dehydrogenase in the TCA cycle removed, excess ATP re- 
moved via Reaction 31, and biomass synthesis represented as one reaction (Table 1). the 
bioreaction network matrix A is nonsingular and has a dimension of 33 x 3 1 and a condition 
number of 62. The corresponding biochemical reactions are listed in the Appendix. 

The fluxes generated by the unconstrained solution, Equation 8, from Erickson's data 
appear reasonable, and the percentage of glucose entering the PPP calculated from the flux 
estimates correlates well with experimental data presented by Oishi and Aida. I9 It also appears 
that the low lysine yield of 20% molar might be caused by overproduction of ATP by the 
oxidative pathways of glutamic acid bacteria. 
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APPENDIX: BIOCHEMISTRY AND METABOLITES* 

The following reactions are used to describe the metabolism of glutarnic acid bacteria 
for lysine fermentation. Also given are the important metabolites considered. From this 
information the bioreaction network matrix, A, is constructed. 

A. BIOCHEMICAL REACTIONS 
Embden-Meyerhof-Parnas Pathway 

1. GLC + ATP -, GLC6P + ADP 
2. GLC6P * FRU6P 
3. FRU6P + ATP -, 2 GAP + ADP 
4. GAP + ADP + NAD -, NADH + G3P + ATP 
5. G3P * PEP + H,O 
6. PEP + ADP -, ATP + PYR 
7. PYR + NADH ct LAC + NAD 

Carboxylation Reactions 
8. OAA -, PYR + CO, 

TCA Cycle 
9. PYR + COA + NAD -+ ACCOA + C02 + NADH 

10. ACCOA + OAA + H,O ct ISOCIT + COA 
11. ISOCIT + NADP c* AKG + NADPH + CO, 
12. SUCCOA + ADP * SUC + COA + ATP 
13. SUC + H20 + FAD o MAL + FADH 
14. MAL + NAD * OAA + NADH 

Glyoxylate Shunt 
15. ISOCIT c* SUC + GLYOX 
16. ACCOA + GLYOX + H20 -, MAL + COA 

* See Appendix Section B for abbreviation designations. 
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Glutamate and Glutamine Production 
17. NH, + AKG + NADPH t, GLUT + H,O + NADP 
18. GLUT + NH, + ATP --, GLUM + ADP 

Pentose Phosphate Cycle 
19. GLC6P + H,O + 2 NADP -, RIBU5P + CO, + 2 NADPH 
20. RIBU5P tt RIB5P 
21. RIBU5P * XYL5P 
22. XYL5P + RIB5P o SED7P + GAP 
23. SED7P + GAP t, FRU6P + E4P 
24. XYLSP + FAP - FRU6P + GAP 

ATP Generation; P I 0  = 2 
2 5 . 2 N A D H + O , + 4 A D P + 2 H 2 O + 4 A T P + 2 N A D  
26. 2 FADH + 0, + 2 ADP -+ 2 H,O + 2 ATP + 2 FAD 

Aspartate Family 
27. OAA + GLUT t, ASP + AKG 
28. ASP + NADPH + ATP -* ASA + ADP + NADP 
29. ASA + PYR + NADPH + SUCCOA + GLUT-, SUC + AKG + CO, + H,O 

+ LYS + NADP + COA 

Biomass Production; Assume Mol Wt (Biomass) = 100 
30. 0.0205 GLC6P + 0.00709 FRU6P + 0.0898 RIB5P + 0.0361 E4P + 0.0129 GAP 

+ 0.15 G3P + 0.0519 PEP + 0.125 PYR + 0.327 ACCOA + 0.058 AKG + 
0.107 OAA + 0.0326 LYS + 0.796 NH, + 0.025 GLUT + 0.025 GLUM + 3.89 
ATP + 1.37 NADPH + 0.312 NAD = BIOMASS + 3.89 ADP + 1.37 NADP 
+ 0.312 NADH 

Unaccounted for ATP Requirements 
3 1. ATP + ADP 

B. LIST OF IMPORTANT METABOLITES 
Each metabolite listed below corresponds to one element of the r vector. 

1. Acetyl coenzyme A (ACCOA) 17. Glyoxylate (GLYOX) 
2. a-Ketoglutarate (AKG) 1 8. Isocitrate (ISOCIT) 
3. Aspartate semialdehyde (ASA) 19. Lactate (LAC) 
4. Aspartate (ASP) 20. Lysine (LYS) 
5. Adenosine 5'-triphosphate (ATP) 2 1. Malate (MAL) 
6. BIOMASS 22. NADH 
7. CO, 23. NADPH 
8. Erythrose-4-phosphate (E4P) 24. 0, 
9. Flavin adenine dinucleotide (FADH) 25. Oxalocetate (OAA) 

10. Fructose-6-phosphate (FRU6P) 26. Phosphoenolpyruvate (PEP) 
1 1. 3-Phosphoglycerate (G3P) 27. Pyruvate (PYR) 
12. Glyceraidehyde-3-phosphate (GAP) 28. Ribose-5-phosphate (RIB5P) 
13. Glucose (GLC) 29. Rubulose-5-phosphate (RIBUSP) 
14. Glucose-6-phosphate (GLC6P) 30. Sedoheptalose-7-phosphate (SED7P) 
15. Glutamine (GLUM) 3 1. Succinate (SUC) 
16. Glutamate (GLUT) 32. Succinyl CoA (SUCCOA) 

33. Xylulose-5-phosphate (XYL5P) 
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