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Figure 1. Top left: Egg production rate (eggs female-' day-') versus mean chlorophyll concentration (mg m-3). Top middle: Mean chlorophyll 
concentration versus land-derived nitrogen load (kg ha-' y-'). The lines represent standard error. Nitrogen loads obtained from Valiela et al. (2). Top 
right: Egg production rate versus land-derived nitrogen load. Bottom left: Mean prosome length versus nitrogen load. The lines represent standard error. 
Bottom right: Egg production rate versus mean prosome length of females (,um). One asterisk indicates significance of <0.05 and two asterisks indicate 
significance of <0.01. 
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1800s. Population growth and land-use changes have affected the 

hydrology of the watershed by increasing the amount of water 

pumped from the basin and altering the land cover-a problem that 
is prevalent nationwide (1). In recent years, the river has suffered 
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from low flows in the summer (2). Low streamflow can be detri- 
mental to the ecosystem of the river, the surrounding wetlands, and 
the estuary into which the river drains (1). The purpose of this 
study was to examine the effect of municipal water use on the 
overall water budget of the Ipswich River basin. 

Monthly water budgets were constructed for the period 1931- 
1989 as: AS = P - ET - R - D, where P is precipitation; ET is 

evapotranspiration; R is streamflow; D is net diversions, including 
drinking water and wastewater; and AS is change in storage. 
Precipitation data were obtained from observations of the National 
Weather Service (NWS) and cooperative network. Observations 
from NWS first-order weather stations were used to calculate 
evapotranspiration using a mathematical model (3). Streamflow 
data were obtained from the U.S. Geological Survey. Data on 
monthly water pumpage and wastewater systems were collected 
from individual town water departments, the Department of Envi- 
ronmental Protection, the Massachusetts Area Planning Council, 
and the Massachusetts Water Resources Authority. Public drinking 
water was divided into public water supply from within and from 
outside the watershed based on the locations of pumping stations 
relative to the boundary of the Ipswich River basin. Using popu- 
lation data and the relative distribution of urban land use for each 
town, we separated the total public water supply into water deliv- 
ered inside and outside the basin. To account for lawn and plant 
watering, an irrigation coefficient was calculated for the summer 
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months by considering the difference between summer and winter 
pumpage. Finally, the remaining water, for commercial and house- 
hold use, was divided into wastewater exported out of the basin via 
sewer systems and wastewater retained in the watershed by on-site 
septic disposal. Sewered water was assumed to have a 65% infil- 
tration component from groundwater (4). Linear regression anal- 
yses were performed to examine time-dependent trends in annual, 
monthly, and seasonal data. 

On a long-term annual scale (Fig. la), precipitation, streamflow, 
and evapotranspiration are highly variable but do not display any 
significant time-dependent trends. Only diversions have increased 
significantly over time (r = 0.96, P < 0.001) and currently 
represent 15%-20% of streamflow. One would expect that with a 
significant increase in diversions, streamflow would decrease sig- 
nificantly. It is plausible, however, that changes in land use have 
masked the effect of diversions on streamflow and the overall 
water budget; for example, the conversion of forested area to 
impervious land cover could lead to an increase in streamflow and 
a decrease in evapotranspiration (5). Our analysis of the main 
diversion components shows an increase in water drawn from 
within and outside the basin, tripling over the 59-year period (Fig. 
lb). Water supply from outside the basin constitutes 30% of the 
total supply; of this total water supply, 71% is delivered outside the 
watershed. The septic wastewater component levels off after 1966, 
when sewer systems became more prevalent. 
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Figure 1. (a) 1931-1989 annual time series of the main components of the water budget, with only diversions increasing significantly. (b) 1931-1989 
annual time series of the components of diversions, including public water supply (PWS) from within andfrom outside the Ipswich River basin (IRB), water 
delivered outside the basin, septic and sewered wastewater, including infiltration. (c) Main components of the Ipswich River basin water budget, including 
1979-1988 annual averages. (d) 1979-1988 average monthly time series of the main components of the water budget. 
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In the 1979-1988 water budget (Fig. Ic), which is representa- 
tive of current conditions, evapotranspiration (541 mm/y) and 
streamflow (538 mm/y) each account for about 45% of precipita- 
tion (1180 mm/y). Diversions leaving the basin (143 mm/y) are 
greater than diversions entering the basin (33 mm/y). The change 
in storage (-9 mm/y) is small. However, in this study, we ignored 
the absolute value of the storage component because it is highly 
dependent on the evapotranspiration estimate, which is the least 
accurate component of any large-scale water budget; only the 

temporal variation is considered. During the summer months (Fig. 
Id), the change in storage is most negative, due to increasing 
evapotranspiration, and it is coincident with decreasing rainfall and 
streamflow. Diversions remain relatively constant throughout the 

year, with high groundwater pumping during the summer balanced 

by surface water withdrawals into reservoirs during the rest of the 

year. The effect of diversions should be most apparent during the 
summer months because streamflow is lowest at this time. 

With increasing water demands, diversions have become a ma- 

jor component of the water budget-they currently represent 15%- 
20% of the streamflow. Our analyses of the water budget did not 
reveal any significant long-term trend in change in storage or in 
streamflow. This suggests that to understand the impact of diver- 
sions on the system we ought to reduce the time step (to daily or 
hourly) to examine changes in streamflow; focus the study area on 
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the upper Ipswich basin where low flows occur and the river dries 

up most frequently; and look at different indices of hydrological 
change, such as the number of days of low flow and groundwater 
levels. Low streamflow is detrimental not only to the river eco- 
systems, but also to the downstream estuary, where alterations in 
salinity during the summer months could increase the stress on 
estuarine communities, a topic that requires further research. 
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The green crab, Carcinus maenas, is native to the Atlantic coast of 

Europe. First reported in the western Atlantic in 1817, it is abundant 

today in salt marshes and on rocky shores from Nova Scotia to 

Virginia. As a predator, it has been linked to the sharp decline of the 
New England soft-shell clam (Mya arenaria) industry in the 1940s 
(1). Since the crab was first found in San Francisco Bay in 1989, 
scientists and fishers have been anxiously monitoring its movement 
northward and its effects on the ecosystem (2). Despite interest in the 
extension of the species' geographic distribution, little work has been 
conducted on the home range of individual crabs. We examined the 

population size and summer home range of green crabs in a New 

England salt marsh tidal creek. 
We conducted a mark-recapture experiment in a branched primary 

tidal creek off of the Rowley River in the Plum Island Sound Estuary 
in northeastern Massachusetts. The upper 200 m of the creek has 
about 7274 m3 of volume and about 7128 m2 of creek bed area. Water 

temperature (16?-25?C) and salinity (28%o-31%o) in the creek were 

typical of New England salt marshes in late spring and summer. From 

Earth Systems Program, Stanford University, Stanford, California 
94035. 

2 Ecosystems Center, Marine Biological Laboratory, Woods Hole, Mas- 
sachusetts 02543. 
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29 June to 6 August 1999, crawfish traps (20 x 30 x 45 cm with 
1.3-cm mesh and 8-cm opening) baited with tuna fish or dog food 
soaked in fish oil were laid along both branches and downstream of 
the confluence at seven sites 100 m apart. From 29 June to 30 July, 
each trapped crab measuring 40 mm or more was marked either with 
colored oil-based marker paint on the carapace or with a plastic loop 
behind the claws. The carapace width (in millimeters), sex (male or 
female), and carapace color (red or green) of each crab were also 
noted. Crabs trapped at each of the seven sites were marked with a 
distinct color scheme and then released at the same site. Marked crabs 
that were recaptured were marked a second time with the color 
scheme corresponding to their recapture location. Crabs trapped from 
3 to 6 August were counted and removed from the creek. We used the 
Lincoln index and the Schnabel method to estimate population size 

(3). We also conducted two catch-per-unit-effort collections in five 
other similar-sized primary tidal creeks off of the Rowley River (Sand 
Creek, Shad Creek, West Creek, Club Head Creek, and Nelson Island 
Creek) by deploying traps from high tide to low tide (-6 h). 

We estimated the population of green crabs in the study creek to 
be 30,000-40,000 individuals (-5 crabs per m2) (Table I). Re- 

capture rate of marked crabs was between 5% and 11%. The 

average number of crabs caught over a 6-h period did not differ 

significantly between the study creek and the other five creeks 
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