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Recent advances in massively parallel DNA sequencing techniques have allowed an unprecedented
assessment of capability and expression of metabolic function in marine systems via metagenomic
and metatranscriptomic analyses, respectively.  Over the next decade omics-based metabolic
observations will become common place, but the ability to synthesize these data and translate
them to properly constrained ocean-scale biogeochemistry is lacking. Regression-based analyses
of metabolic function will allow some assessment of marine ecosystem function, but what is
needed are mechanistic-based ocean biogeochemistry models that can integrate these new observations
to further both our understanding of marine biogeochemistry as well as increase our prognostic
capabilities.

Intellectual Merit :
This project builds upon the Darwin Project, a trait and selection based modeling approach
for describing marine plankton communities and biogeochemical cycles. The approach relies
on local competition to select from a diverse population and determines the functional characteristics
of microorganisms that mediate biogeochemical cycles.  Key challenges are defining and constraining
the costs and benefits of key traits and functionalities. Here we proposed to combine this
selection-based modeling approach with a distributed metabolic network perspective previously
develop to facilitate calculating reaction thermodynamics. This will provide mechanistic and
quantitative description of key metabolic functions and allow the new model to be directly
mappable to omics-based observations.  The project will utilize new modeling design criteria
based on the maximum entropy production (MEP) conjecture to determine allocation of metabolic
machinery and its expression, such as metabolic switching between nitrogen fixation and ammonium
uptake. Model testing will rely on existing oceanographic surveys and observations. Once validated,
the coupled model will be used to investigate losses of functional biodiversity, generalist
versus specialists, temporal planktonic strategies as well as losses in community complementarity
on ecosystem biogeochemistry. A significant output from the project will be a predicted, global
functional biogeography, mapping metabolic function and expression (such as nitrogen fixation
and ammonium oxidation), that can be tested with, and used to interpret, directed omics observations.

Broader Impacts :
Predicting how marine biogeochemistry will respond to global change is a pressing issue for
society.  This project will directly advance modeling skills for predicting such changes using
the MEP paradigm that should prove to be more robust to extrapolation.  In addition, research
efforts will allow observations from the rapidly developing omics disciplines to be related
to model predictions and allow measurements at the genome scale to be quantitatively extrapolated
to global-scale biogeochemical processes.  This project will support one postdoctoral scholar
in this new interface between ocean biogeochemistry modeling, thermodynamics and molecular
observations.  The project will also support summer internships as part of the Woods Hole
Partnership Education Program (PEP), which is a consortium of institutions committed to increasing
diversity in Woods Hole, as well as support two undergraduate independent research projects
per year as part of the Semester in Environmental Science Program at MBL. To broaden exposure
of MEP concepts in marine biogeochemistry and explore its place in the broader context of
recent advances in metabolic modeling and theory, we plan to propose a workshop to NSF?s Ocean
Carbon & Biogeochemistry Program to be held in year 2. Ocean model code developed during the
project will be open source and disseminated from mitgcm.org.
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i. Response to Previous Review 
This is the third submission of the proposal to Bio OCE, and we greatly appreciate the constructive input 
from the previous reviews. The proposal ranked highly in the last panel (E, E, E/VG, E/VG), but there 
were some concerns regarding integration and complementation of the Maximum Entropy Production 
(MEP) model to established approaches.  In Section 3 we now show that the MEP model represents more 
of a natural extension to the existing Darwin model rather than a completely de novo synthesis.  MEP is 
simply a means to implement Lotka’s (1922) ideas within a quantitative framework that can be readily 
implemented within the existing Darwin model.  We have also presented some proof-of-concept results in 
Sections 3 (Fig. 1) and Section 4.4.3 (Fig. 4).  Finally, we have made our Broader Impacts more project 
specific and plan to hold a workshop in year 2 on thermodynamic approaches to understanding marine 
biogeochemistry to broaden appreciation of the MEP approach. 
1. Introduction 
Current ocean ecosystem and biogeochemistry models aim to represent the cycling of carbon and other 
elements, and the relevant structure of the microbial community, in order to provide diagnostic and 
predictive tools for ecological, biogeochemical and climate studies.  Building on the early models of 
Riley (1946), Steele (1954), Fasham et al. (1990) and others, a paradigm shift occurred in the JGOFS era 
with the development of such models which resolve "functional types" of primary producers (e.g., Chai et 
al. 2002, Moore et al. 2002, Le Quere et al. 2005). The resolution of functional types of phytoplankton 
allows an explicit representation between contrasting "microbial loop" and "bloom" communities and the 
implication for new and recycled production, export efficiency and so on. More recently, models have 
explored the role of finer-scale diversity within the phototrophs (e.g. Bruggeman & Kooijman 2007, 
Follows et al. 2007, Dutkiewicz et al. 2009) which extends the application of such models to finer-grained 
views of biogeochemical function (e.g., Monteiro et al. 2010) and a link to a broader set of ecological 
questions (e.g. patterns of biodiversity, Barton et al. 2010) and the driving forces behind the "self-
organization" of complex and diverse communities (e.g., Dutkiewicz et al. 2012). 

This more recent ecological perspective emphasizes the role of traits and trade-offs in the organization of 
microbial communities. Locally, a population of diverse phenotypes is "sorted" by their relative fitness in 
the given environment. Fitter combinations of traits (physiological and biophysical characteristics of the 
organism which mediate its interaction with the environment) will be selected for, where less fit trait 
combinations will be excluded. However, less fit combinations may be fittest in some other region or 
season. Local bottom-up selection does not lead to complete competitive exclusion because of dispersal 
(e.g., Barton et al. 2010, d’Ovidio et al. 2010), top-down pressure from predators or viral activity ("kill 
the winner" effects; e.g. Thingstad & Lignell 1997, Prowe et al. 2012), phenotypic plasticity and (on 
appropriate timescales) genetic adaptation, though the latter processes are not yet resolved in ocean 
models.  This selection-based approach is the foundation of the Darwin model (Follows et al. 2007, 
Dutkiewicz et al. 2009, Ward et al. 2012, Ward et al. 2014), which we seek to build upon in this proposal 
with an energy rather than organismal emphasis. 

The focus of most, if not all, biogeochemical models has been on elucidating and quantifying the 
mechanisms by which planktonic communities interact and function.  While this has been and will 
continue to be an extremely useful approach, placing emphasis on the organisms has two undesirable 
features: 1) the emergent properties of a system can be difficult to control because the model parameters 
operate at the individual rather than system scale and 2) the details necessary to quantify the planktonic 
community results in models with a relatively large number of biological parameters that are often poorly 
known and available observations are insufficient to resolve (Ward et al. 2010).  Recent models have 
reduced parameter uncertainty by using competition as a means to select parameter values, but the focus 
still remains on the interactions of individuals or guilds and no selection is placed at the systems level. 

However, organisms do not grow in isolation, but rather are tightly coupled to adaptation and evolution of 
other community members, which supply elemental resources, free energy, or both by their actions; the 
fitness landscape is not fixed but is as dynamic as the organisms themselves (Chave 2013).  Cooperative 
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interactions (Wilson 1997, Nowak 2006) are particularly important for microbially-based ecosystems, 
such as marine planktonic systems, because it allows them to function more like coordinated, but 
distributed, metabolic networks (Vallino 2003) that organize to effectively extract nearly all free energy 
available to an ecosystem. Systems level assessments are not new and date back to the pioneering work of 
Lotka (1922) and H.T. Odum (1955, 1983), who were the first to speculate on the governing principles 
that may organize ecosystems. However, this systems-level view has not yet been explored or exploited in 
current ocean ecosystem and biogeochemistry models. Over the last decade, there has been a growing 
appreciation for the mechanism that drives system organization; namely, the dissipation of available 
energy. This perspective does not consider the individuals, but rather the properties exhibited by their 
collective actions.  This is similar to, and derives from, thermodynamics that describes an ensemble of 
particles, not the particle interactions themselves. Because the free energy extracted by the community is 
ultimately dissipated as heat (i.e., biomass accumulation does not increase indefinitely but reaches a 
pseudo-steady state) organization of ecosystem function can be described as a type of maximum entropy 
production (MEP) process (Paltridge 1975, Dewar 2003, Dewar 2005).  When applied to microbial 
systems, MEP provides a powerful organizing principle that provides a direction to the complex 
interactions of a community that ultimately derives from the actions of its individual constituents (Vallino 
2010, Vallino 2011). Perhaps Lineweaver and Egan (2008) summarize this change in perspective best 
with “This represents a paradigm shift from ‘we eat food’ to ‘food has produced us to eat it’.” This new 
paradigm will serve as foundation for model development. 

In this proposal we will focus our attention on the dissipation of potential energy via the synthesis of 
catalytic agents or, as Falkowski (2008) describes them, metabolic machines. The Darwin modeling 
approach will be used to determine, via competition, the allocation and expression of molecular 
machinery to metabolic pathways constrained by the availability of resources (i.e.,C, N, P, Si, Fe, etc) and 
information contained in the planktonic community’s metagenome. Self-selected catalytic machines will 
then be assessed using entropy production as the metric, which we can use to falsify the premises that 
systems organize to maximize entropy production.  This new thermodynamic addition to the Darwin 
model has several advantages, which we highlight below. We view this new branch as a complement, not 
replacement, to the existing Darwin models. 

2. Problem Statement and Proposal Objectives 
Marine biogeochemistry models that use dozens of biological parameters have far more degrees of 
freedom than can be constrained by available observations, even under base case scenarios (Vallino 2000, 
Ward et al. 2010, Ward et al. 2013).  Consequently, there exist many different parameter configurations 
(technically an infinite number) that can reproduce the available observations, yet each parameterization 
will produce different dynamics when operating outside of the data envelope used for parameter 
calibration.  That is, models interpolate observations well, but often extrapolate beyond them poorly.  Yet, 
it is often the need for extrapolation that drives model development; because we are often interested in 
predicting how marine biogeochemistry may change under conditions that have not yet occurred, such as 
increased temperature or pCO2, higher nutrient concentrations, decreases in pH, or losses in biodiversity.   
This proposal seeks to develop a modeling approach that is expected to extrapolate more gracefully, 
because it is based on the systems level property of maximum entropy production. The MEP approach 
will be added to the Darwin model and is based on a metabolic framework which exploits redox and 
energy constraints that has been developed and explored in idealized marine settings (Vallino 2010, 
Vallino 2011, Algar & Vallino 2014, Vallino et al. 2014) but has not yet been brought to bear in 
"realistic", basin or global scale simulations. The proposal objectives and associated advantages are as 
follows:   

1. The model will be developed with entropy production as the design criterion as opposed to 
organismal growth, which will provide the following benefits: 
a. Enhance prognostic capabilities in changing environments. 
b. Provide a thermodynamic underpinning for key metabolic processes such as nitrogen fixation 
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and nutrient cycling. 
2. A metabolic representation will be used to capture the collective actions of the planktonic 

community, the results from which can be more readily mapped to metagenomic and 
metatranscriptomic observations. A major product of the proposed work is to present 
hypothesized/predicted global maps of metabolic function in the surface ocean. 

3. By describing microbes as a collection of “metabolic machines” (Falkowski et al. 2008), the costs 
and benefits of packaging multiple metabolic machines together, or separately, can be evaluated 
quantitatively. For example: 
a. What are the trade-offs between generalism (supporting numerous metabolic strategies) and 

specialism (“streamlining”) or different extents of luxury uptake (e.g., Tozzi et al. 2004)?  
b. Under what environmental circumstances do these different strategies emerge as useful? 
c. Are systems dominated by specialists more likely to suffer loss of function? 

4. The proposed model framework, in which selection occurs from an initialized population which 
resolves a broad and diverse set of metabolic functionality, holds promise for solving MEP-based 
problems. We may ask, from a diverse initialized community, is the subset that emerges as “fittest” 
that which maximizes entropy production of the whole system?  
a. Is the MEP solution more realistic than other solutions in any key regard? 
b. We will explicitly test the hypothesis that the MEP principle operates to regulate the 

organization of complex and diverse ecosystems by comparting MEP solutions to 
oceanographic observations. 

In Section 3 we discuss the Darwin ocean model that forms the model foundation. In section 4 we 
develop the MEP-based addition.  In Section 5 we outline the simulations that will be run and the 
hypotheses that will be tested. Section 6 describes the project’s broader impacts. 

3. Darwin Ocean Model 
The ocean modeling framework to be developed and applied is the MITgcm including the fluid dynamics 
(Marshall et al. 1997) and biogeochemical components as well as some aspects of the existing ecosystems 
components (e.g., Follows et al. 2007, Ward et al. 2012), which we describe below.  

3.1 MITgcm: Physical model, model configurations and biogeochemical tracers. 
MITgcm is an ocean modeling platform based on an efficient primitive equation solver (Marshall et al. 
1997) with an open-source code-base (http://mitgcm.org) which includes many extensions. The level-
based model can be configured for any bathymetry (from 1-dimensional column to realistic eddy-
resolving global simulations). Parameterizations of sub-gridscale processes include buoyancy and shear 
driven vertical mixing (e.g., Large et al. 1994) and the rectified effect of mesoscale eddies on tracer 
transport (Gent & McWilliams 1990). Biogeochemical and ecological modules (e.g., Parekh et al. 2005, 
Follows et al. 2007, Ward et al. 2012) are deeply integrated and modifications of these components – as 
proposed in Section 4 – are easy to implement in any physical configuration. Here we aim to develop, test 
and apply new biogeochemical and ecological model components in the context of three dimensional 
ocean circulations. For development we will employ a single basin (double gyre) configuration at low-
resolution (Lévy et al. 2014) which extends beyond the box-model of Vallino (2011) but remains highly 
idealized. We will ultimately apply the new parameterizations in more realistic global settings where the 
physical state is constrained to be consistent with remote sensing and in situ hydrographic measurements 
(Wunsch & Heimbach 2007) (e.g. Fig. 1) (e.g., Follows et al. 2007, Dutkiewicz et al. 2009, Ward et al. 
2012). The biogeochemical model resolves dissolved inorganic carbon (see, e.g. Follows et al. 2006) 
alkalinity, phosphate, nitrate, silicic acid, particulate (detrital) and dissolved organic forms of carbon, 
nitrogen, phosphorus and iron. Iron chemistry includes explicit complexation with an organic ligand of 
specified concentration, scavenging by particles, and a representation of aeolian and sedimentary sources 
(Dutkiewicz et al. 2012).  
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Fig. 1. (A) Global annual primary production derived from remote sensing products (g C m-2 yr-1). (B) 
Annual primary production (g C m-2 yr-1) as simulated by the Darwin model (reproduced from Follows et 
al, 2007; supplementary material). (C) Simulated global entropy production as a function of the number 
of phytoplankton phenotypes (“species”) seeded in the simulation. Increasing the coverage of trait-space 
in the species leads to enhanced resource utilization, higher global primary productivity, and higher 
entropy production (EP), which is consistent with MEP theory. The simulation is based on that described 
in Follows et al (2007; the “Darwin Project model”) where the traits of each individual phytoplankton 
species are drawn stochastically from specified distributions and EP is estimated from GPP (Unpublished 
study: J. Bragg, S. Dutkiewicz, M. Follows, J. Vallino).  

3.2 Current Ecosystem Model. 
In the Darwin model of Follows et al. (2007) and Dutkiewicz et al. (2009), the ecological sub-model 
resolves order 100 phenotypes of potentially viable, virtual phytoplankton and (micro) zooplankton. All 
are initialized and interactions of the community and environment organize both through a natural 
selection process. Biogeochemical and biological tracers interact through the formation, transformation, 
and remineralization of organic matter. Inorganic nutrients are taken up by phytoplankton, and these are 
grazed by zooplankton. Mortality, sloppy feeding, and egestion transfer living organic material into 
sinking particulate and dissolved organic detritus, which is currently returned to inorganic form through a 
simple parameterization of bacterial remineralization. The time-dependent change in the biomass of each 
of the modeled plankton types is described in terms of growth, sinking, grazing, and other mortality, 
alongside transport and mixing by the fluid flow. Growth rate is a function of temperature, light and 
available nutrient resources. Up to 6 taxonomic “functional groups” are resolved; analogs of 
Prochlorococcus; picoeukaryotes, Synechococcus, coccolithophores, dinoflagellates and diatoms 
(Dutkiewicz et al. 2015).   

Following many earlier examples, the Darwin model (as described by Follows, 2007; Dutkiewicz et al, 
2009) employed a governing equation for the biomass of phytoplankton type j, i.e. Pj (moles R m-3), 
similar to this simplified form: 

  (1) 

Here the first term on the right parameterizes population growth using Monod kinetics where R is the 
limiting resource, μo,i(T,I) (s-1) is a temperature and light dependent maximum growth rate and KR,j (mol 
m-3) is a half-saturation for R limited growth. The second term on the right indicates grazing by predator 
Zk, the third term on the right represents losses including respiration and sinking, and the last two terms 
represent advection and diffusion by the ocean currents and turbulence (see, e.g. Dutkiewicz et al. 2009 
for more complete forms). The parameterizations and parameter values associated with growth and loss 
processes encapsulate the traits of the organisms. A key challenge in “trait-based” modeling, (such as the 
Darwin model) is to appropriately capture the costs and benefits of particular traits such that the virtual 
organisms self-assemble into appropriate populations with appropriate biogeochemical functionality. 

Focusing on growth, μo,i and KR,j are key traits which differentiate key ecological strategies: opportunistic 
“bloomers” such as diatoms are characterized by high maximum growth rates and the ability to grow fast 
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in resource replete conditions. In contrast, gleaners such as Prochlorococcus eke out a living in very 
oligotrophic environments where their high nutrient affinities (related to low KR,j) make them the fittest 
competitors for scarce resources. These key traits depend, in part, on body size and this has been 
demonstrated empirically and with robust mechanistic theory for volume e.g. (Irwin et al. 2006, Litchman 
et al. 2007). For example, maximum growth rates (within taxonomic groups) scale with cell size as a 
power law. To reflect these constraints, we have resolved multiple size classes and employed allometric 
constraints to key structure traits in the Darwin model (e.g. Ward et al., 2012; 2014)1.  

Though maximum growth rates scale with size within taxonomic groups, there are significant differences 
between those groups. For example, picocyanobacteria have relatively slow maximum growth rates 
despite being the smallest cells, and size-for-size diatoms typically have higher maximum growth rates. 
These inter-guild differences reflect diversity of physiological and metabolic organization that is not fully 
understood. They represent an additional dimension in trait space beyond body size. Similarly, such 
metabolic organization determines diverse heterotrophic and chemotrophic lifestyles which are currently 
absent or poorly represented in the Darwin model. The MEP approach proposed here (described below) 
provides a strategy for encapsulating such unresolved metabolic organization and trade-offs by 
hypothesizing that, though the details are not explicit, they conform to a broader governing principle. 
Significantly, since the MEP-based approach described in Section 4 is couched in terms of analogues of  
μo,i and KR,j  and Monod-like kinetics, it will be technically straightforward to reframe the Darwin model 
to an MEP-based structure. In turn, the fitness and selection-based self-organization of the Darwin model 
framework will provide an efficient alternative to the optimization of parameters previously employed in 
the MEP approach (details below).   
4. MEP-Based Biogeochemistry Model 
Our objective is to develop a new branch to the existing Darwin model described above that replaces the 
food web representation with a metabolic reaction network that is more amendable for implementing 
MEP.  While we considered modifying the current Darwin ecosystem model, its control variables (i.e., 
adjustable parameters) are design to influence competition nuances between organisms for resources or 
prey, and not on the direct dissipation of free energy. Because the MEP approach is thermodynamically 
based, the structure of the planktonic community is not explicitly constrained.  For instance, bacteria 
grazed by protists or lysed by viruses are indistinguishable processes. In fact, the MEP conjecture 
indicates that there should be many different community configurations that give rise to the same entropy 
production, which has been observed in microbial systems (Fernandez et al. 1999, Wittebolle et al. 2008, 
Vallino et al. 2014). Because of this organismal interchangeability, the ecosystem is represented by a 
distributed metabolic network (Vallino 2003) that is capable of expressing known metabolic functions, 
such ammonium oxidation or N2 fixation. Each metabolic function is catalyzed by an associated 
“biological structure”, S , that is synthesized from resources and free energy available in the 
environment.  While this approach does not provide details of food web structure, as does the current 
Darwin model, the MEP-based model should be more robust for extrapolated environmental conditions, 
such as occurred in the distant past or may occur in the future.  Using an analogy, the current Darwin 
model is similar to a weather model that can predict detailed state information, while the MEP model 
functions more like a climate model that is expected to have more robust long-term forecasting at the 
expense of details.  As discussed below, the MEP model will use the approach of populating a system 
with a large number of competitors and allowing communities to self-assemble, as pioneered in the 

                                                 
1 In parallel, we have extended the model to resolve flexible internal stores of nitrogen, iron and other 
elements (Ward et al. 2012, 2014) relative to a cellular carbon pool (e.g., Droop 1968). A dynamic 
pigment pool regulates carbon fixation in accord with the model of Geider et al. (1998). Recent 
developments allow simple and flexible configuration of the Darwin model such that the user defines 
whether Monod or Droop kinetics are used on organism-by-organism and nutrient-by-nutrient basis. 
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Darwin model. This will allow us to solve an otherwise difficult optimization problem (see Section 4.4.3). 

4.1 MEP Background 
Numerous theories describing ecosystem organization and function have been proposed in theoretical 
ecology dating back to at least Lotka (1922), who proposed ecosystems organize to maximize power. 
Here, however, we are particularly interested in the maximum entropy production (MEP) conjecture 
(Paltridge 1975, Dewar 2003, Dewar 2005, Niven 2009), which asserts that steady state, non-equilibrium 
systems with many degrees of freedom will likely be found in a macrostate that maximizes internal 
entropy production, where entropy here refers to the classic thermodynamic definition of Clausius, Gibbs 
and Boltzmann (i.e., the dispersal of energy; Clausius 1867). If internal self-organization, such as vortices 
and macroscopic structures, facilitates internal entropy production, then those structures will likely 
develop (Lorenz 2003), but the theory makes no distinction between biotic or abiotic systems. Similar to 
equilibrium thermodynamics that requires isolated systems to be found in a state of maximum entropy, 
MEP indicates that non-equilibrium systems will head towards equilibrium along the fastest possible 
pathway, which may be facilitated by internal system organization.  That is, they will dissipate free 
energy as fast as possible within the constraints imposed on the system (Makela & Annila 2010, Vallino 
2010).  Several phenomena appear consistent with MEP, including planetary-scale heat transport (Lorenz 
et al. 2001, Kleidon et al. 2003), laminar to turbulent flow transition (Martyushev 2007), plant 
evapotranspiration (Wang & Bras 2011), atmospheric and ocean circulation (Kleidon et al. 2003, 
Shimokawa & Ozawa 2007), processes in the critical zone (Quijano & Lin 2014) and many others (see 
Dewar et al. 2014). MEP provides directionality to evolution of the biosphere, in that it should progress 
towards states of higher entropy production. The global succession of anoxygenic phototrophs by 
oxygenic phototrophs is one example of this progression.   

While actively discussed by the community, uncertainty remains regarding the scale over which MEP 
applies (Lucia 2012, Martyushev 2013).  Our preliminary work indicates that MEP applies at a systems 
level as defined by the extent of matter and information connectivity (Vallino 2011).  Hence, a single 
bacterium does not maximize entropy production because it does not dissipate all chemical potential 
(some free energy is used to produce more bacteria instead of CO2 and water).  However, a microbial 
community does achieve a MEP state because the growth of each organism is more or less consumed by a 
predator, and the predator by its predator, and so on.  Total biomass of the community will increase until 
either all incoming energy is consumed (energy limited), or resources limit the amount of biomass that 
can be supported (resource limited).  For instance, the surface ocean is resource limited (typically by N, P 
or Fe), while the deep ocean is energy limited.  Regardless of the limitation, the ecosystem operates near a 
pseudo steady state where the assimilated free energy is simply dissipated as heat, since it is not stored in 
other potentials (Fig. 2), which is the definition of thermodynamic entropy.  Microbes and microbial 
consortium so effectively organize that nearly all chemical potentials found in the environment are readily 
dissipated; it has been estimated that reaction free energy potentials as low as 9 kJ mol-1 can be exploited 
by microbes (Hoehler 2004). Hence, microbial communities are exquisitely evolved and organized to 
extract, and subsequently dissipate, chemical potentials and 
electromagnetic radiation.  

We have developed a theoretical framework for describing 
microbial biogeochemistry as a type of dissipative system 
governed by maximum entropy production (Vallino 2010, 
Vallino 2011) that can be used to direct how communities may 
organize at the metabolic level. The MEP model is founded on 
the hypothesis that microbial communities evolve, adapt and 
organize to extract as much free energy from the environment 
as available resources (N, P, S, etc.) and information (i.e., 
metabolic capability) allow (Fig. 2).  Biodiversity, which we 
view as a reservoir of genomic information, is critical, as it 
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Fig. 2. How an ecosystem functions as a 
purely dissipative system. Either free 
energy input or resources will limit the 
cycling of the system once organized. 

1558710



7 
 

ultimately determines the set of metabolic machines (Falkowski et al. 2008)―catalysts in particular―and 
metabolic functions that can be constructed from the available environmental resources.  This information 
also includes designs for the metabolic machines that turnover machinery, namely protists, predatory 
bacteria and viruses, that allow the system to be dynamic and adaptive to changes in environmental 
drivers via reallocation of biological structure by predation.  

4.2 Temporal strategies and MEP  
An intriguing hypothesis to derive from application of the MEP principle to microbial systems is a 
proposed distinction between biotic and abiotic systems. When entropy production (EP) is maximized 
instantaneously, then no bacteria are produced and any biomass initially present slowly consumes itself.  
The results are similar to how fire behaves.  If instead, EP is maximized over a period of time, then the 
model performs in a manner similar to real microbial communities.  In fact, the model can simulate 
experimental methanotrophic microcosms accurately using only two adjustable parameters (Vallino et al. 
2014).  The approach also works well for describing metabolic switching between denitrification, 
anammox and dissimilatory nitrate reduction to ammonium (DNRA) pathways during anaerobic nitrate 
reduction (Algar & Vallino 2014).  Our hypothesis is that abiotic systems, such as fire or a rock rolling 
down a hill, maximize instantaneous EP by following a steepest descent trajectory along the potential 
energy surface, but such Markovian trajectories can lead to metastable states (the flame gets extinguished 
or the rock gets trapped in a ditch) that limit total EP over time.  Living systems choose alternate 
pathways down the potential energy surface that avoid metastable traps by forecasting future events.  
While this leads to lower instantaneous EP, averaged EP is increased (combustion persists–for 3.8 Gyr 
now–or the rock rolls all the way down the hill).  Living systems discover alternate pathways via 
evolution and natural selection and store this information in the metagenome. For example, storage of 
internal energy reserves (e.g., starches) permit metabolic function to persist when external energy sources 
become temporarily unavailable, such as in animal hibernation and plant dormancy over winter (persistent 
combustion). Circadian rhythm is another example that allows phytoplankton to “predict” the sun will 
return and can orchestrate metabolic machinery appropriately before sunrise (Dvornyk et al. 2003).  
Recently, similar temporal strategies have been discovered for entire microbial communities (Ottesen et 
al. 2014).  While we have implemented ideas from optimal control theory to specifically address 
biological anticipatory control (Vallino et al. 2014), temporal strategies within the Darwin model will be 
implemented using internal storage pools. 

4.3 Structure of MEP model 
The structure of the MEP model is based on the following simple logic.  All non-equilibrium systems 
attempt to race down free energy surfaces towards equilibrium (maximum entropy), but many get trapped 
in meta-stable states due to activation energy barriers.  For instance, at room temperature methane and 
oxygen remain relatively stable.  Introduction of the proper catalyst, however, can free systems from 
meta-stable states allowing them to reach equilibrium quickly (i.e., MEP).  Consequently, microbial 
systems can be viewed simply as complex catalysts that hasten the destruction of chemical potential or 
electromagnetic radiation.  Because biological catalysts are largely protein, in oxidizing environments 
they contain considerable chemical potential; they are far from equilibrium.  The optimization objective 
and model design criterion then is to produce enough catalyst to maximize the dissipation of available 
free energy from resources available in the environment (C, N, P, S, Fe, etc), while keeping the amount of 
catalyst at a minimum, which is the first fundamental design principal of the MEP model.  Over synthesis 
of catalyst (i.e., biomass) would not lead to an MEP state because free energy contained in the excess 
catalyst could have been dissipated producing more entropy.   

To illustrate model design concepts, consider the following simple two-reaction “network” for glucose 
oxidation that consists of two types of catalyst, S  (“producer”) and S  (“consumer”):  

 S
S  (2) 
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 S S
S

S  (3) 

For simplicity we have assumed the chemical composition of the biological structures, or catalysts S , are 
given by , and  represent “feeding preference”, if any, by S . This simple two-reaction 
network has several important features critical to the MEP approach.  1) Each reaction is catalyzed by its 
respective biological structure, S , so reaction rates depend on the concentration of the biological 
structure, S , just as they do for any bacterial growth model (i.e., they are autocatalytic reactions that can 
grow exponentially). 2) The coupled reactions can operate in a futile cycle perpetually turning over 
biological structure fueled by glucose oxidation (e.g., Fig. 2). 3) The thermodynamic efficiency 
parameter, , selects the degree to which reduced organic carbon is either converted to more catalyst 
(pure anabolic reaction as ) or oxidized to CO2 and H2O (pure catabolic reaction as ), where 
the latter reaction produces large amounts of entropy provided sufficient catalyst is present. Note, the free 
energy of reaction  remains negative (i.e., can occur spontaneously) even when , because, 
contrary to popular belief, living organisms are not low entropy structures (Morrison 1964, Martyushev 
2013).  

To describe the growth kinetics of reactions  and , and all others in a reaction network, we use the 
following general expression (Vallino 2011, Vallino et al. 2014),  

 
S

S

 (4) 

where  corresponds to a particular catalyst and  a sub-reaction catalyzed by S . This equation is similar 
to the classic multi-substrate Monod growth model where  are substrate concentrations, 

 or S S  in the above example, but the maximum specific uptake rate is replace 
by  and the half saturation, or Monod, constant is given by . The term  is 
the thermodynamic driving force (Jin & Bethke 2003, Jin et al. 2013) that limits reaction kinetics as 
Gibbs free energy of reaction, , approaches 0 and provides the tradeoff between reaction speed and 
efficiency. As anabolic-catabolic coupled reactions approach 100% thermodynamic efficiency 

, they must proceed reversibly, so infinitely slowly, which explains why evolution has not 
favored growth efficiencies at or near 100% (Pfeiffer & Bonhoeffer 2002).  This represents the second 
fundamental design principle of the model; efficient reactions 
proceed slowly, while fast reactions dissipate large amounts 
of free energy (low efficiency).  
The parameters   and   are chosen to capture bacterial 
growth kinetics observed in nutrient deplete (i.e., oligotrophic, 

) to nutrient abundant (i.e., eutrophic, ) 
conditions. That is,  and  are independent of community 
composition and are typically fixed at 350 d-1 and 5000 mmol 
C m-3, respectively, for all reactions. The exponent  is set 
to either 0 or 1 depending on reaction stoichiometry for the  
state concentration variables, , and  determines how S  
is partitioned to its associated S  sub-reactions, where 

 for all reactions (see Section 4.4 below).  The 
advantage of Eq. (4) is that it only depends on the value of , 
where values of  between 0 and 1 produce a family of curves 
that describes kinetics over substrate concentrations from nM 
to mM (Fig. 3).   
Internal entropy production rate, ,  associated with a reaction network of S catalysts is 
readily calculated from the reaction rates, , Gibbs free energy of reaction, 

, element volume, , and temperature, , as given by (Vallino 2010),  

Substrate Concentration (mmol m-3)
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SS

 (5) 

where S  is the number of subreactions catalyzed by S . We account for concentration of reactants and 
products as well as for activity coefficients in  calculations (Alberty 2003). We also explicitly 
account for proton dissociation equilibria between chemical species via pH, so “ ” and “ ” in the 
above reactions represent  and , respectively (all weak acids and 
bases are accounted for similarly) (Alberty 2003). As evident in Eqs. (2-4), both reaction rates and 
associated Gibbs free energy of reaction depend on the thermodynamic efficiency and partitioning control 
variables  and the concentration of state variables, . Though not shown here, we also calculate 
entropy production from mixing, , but these terms are only a small fraction of the entropy of reaction, 

 (see Vallino 2011 for details).  

To reiterate, our MEP model design places all degrees of freedom that normally reside in adjustable 
parameters, such as half saturation constants, maximum growth rates, etc., within the thermodynamic 
reaction efficiency parameters, . We note that the growth term in equation (4) is analogous to that of the 
Monod kinetics version of the Darwin model in equation (1): biological structureS  replaces biomass Pj 
etc. Hence it is technically simple to implement in the ocean model framework. 

4.4 MEP integration with the Darwin Model  
The MEP-based biogeochemistry model will be incorporated into the MITgcm taking advantage of the 
existing ecosystem modeling framework (e.g. structures to deal with multiple tracers transported by the 
physical flow, carbonate chemistry, interaction of state variables, etc.) and will initially consist of 
biological structures catalyzing aerobic phototrophy and heterotrophy, including N2 fixation and 
nitrification. Each biological structure, S , includes one or more catabolic reactions coupled with one or 
more anabolic reaction, except for predation (Table 1).  For instance, canonical photosynthesis consists of 
catabolic reaction  combined 
with anabolic reaction , 
assuming the phytoplankton 
specializes only in NH3 uptake 
for nitrogen requirements 
(Table 1). This framework also 
allows us to include generalists; 
for instance, combining 
reactions  with 

, would allow the 
phytoplankton to use all 
dissolved inorganic nitrogen 
sources as well as fix N2. 
Similarly, combing reactions  
with  would permit 
mixotrophic growth.  When a 
biological structure contains 
multiple catabolic and/or 
anabolic reactions, the 
partitioning of catalyst to each 
sub-reaction is governed by the 

 control variable in Eq. 
(4); consequently, there are 
some costs associated with 
being a generalist.  For 
instance, the NH3 uptake 
specialist  allocates 

Table 1. Catabolic, , anabolic, , and first order, , reactions used to 
represent the metabolic capability of an aerobic planktonic community, 
where S has the C-normalized elemental composition of 

, and  represents the choice of 
the N source.  We have excluded details on P, Si and Fe for clarity. 

Rxn Reaction Type 
 Free energy dissipating reactions (catabolic reactions) 

 S
 

 S
 

 
S

 

 
S

 
 Biological structure synthesis (anabolic reactions) 

 S
S  

 S
S  

 Biological structure turnover (predation) 

 
S

S
S

 
 First order decomposition reactions 
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100% of its biomass, S , to NH3 uptake, while a generalist that can consume both NH3 and HNO3 may 
only allocate 50% of S  to NH3 uptake if  Consequently, the specialist will be able to grow 
twice as fast as the generalist, but of course the generalist can still grow on HNO3 when NH3 
concentration is very low.  We realize that this is not a perfect representation of generalist versus 
specialist, but our general design criterion is to incorporate known metabolic constraints while 
introducing no additional parameters.  This design criterion is also evident in the reaction associated with 
biological structure turnover (i.e., predation;  in Table 1).  In this reaction all resources needed by the 
predator are met by the prey, and the control parameter that governs thermodynamic efficiency, , also 
determines how much of the prey gets converted into labile C, N, P and Fe (as CH2O, NH3, H3PO4 and 
Fe) versus detrital (i.e., refractory) pools: CD, ND, PD and FeD.  The rational is that the more efficient the 
reaction is, the slower the reaction proceeds, so more C, N, P and Fe of the prey will be extracted, while 
faster reaction rates with lower  will result in more refractory material produced.  Again, this is not a 
perfect representation, but it does capture expectation and does not introduce any new parameters.  
Finally, the most difficult material to consider is the refractor, or detrital pools: CD, ND, PD and FeD.  
Because detritus is often a poorly defined biopolymer, we represent its decomposition into labile pools via 
uncatalyzed first order decay reactions ( , Table 1).  These type of poorly define biological parameters 
are in general what we try to avoid including, but it is impossible to remove them all.  
In this formulation, the reaction control variables  and  are analogous to trait parameters in the 
current Darwin model. Importantly, the control parameters are all bounded between 0 and 1, which 
facilitates implementation.  

4.4.1 Primary Production, Photoautotrophy To date, we have successfully used MEP to model microbial 
systems consisting of chemoorganoheterotrophs, chemolithoautotrophs and chemolithoheterotrophs. This 
will provide an excellent framework for incorporating a broader set of microbial lifestyles into the 
MITgcm/Darwin framework. However, we have not yet incorporated phototrophs into the MEP 
framework. Consequently, we describe here some of the details associated with combining catabolic and 
anabolic reactions of Table 1 for photoautotrophs that use only NH3, but anoxygenic photoautotrophs 
based on S cycling can also be readily included for studies investigating biogeochemistry in oxygen 
minimum zones. The combined oxygenic photoautotrophy reaction (  reactions, Table 1) in 
abbreviated form is, 

 
S

S  (6) 

For clarity, we have not shown the other elements necessary for S  synthesis, and other combinations of 
reactions in Table 1 could also be used.  In this reaction, high frequency light, , is converted to infrared 
light, , as a function of intercepted photons captured by phototrophs (see below), where  is Planck’s 
constant. The parameter  (mmol-photon mmol-rxn-1) is determined such that as  approaches 1, 
100% of the usable light energy is transferred to chemical potential, so that the overall reaction free 
energy equals 0.  Of course, this means the reaction proceeds infinitely slowly.  At the other extreme, 
when   approaches 0, all light energy is dissipated as infrared radiation without any biosynthesis.  

A radiative transfer framework, already present in the MITgcm/Darwin model system, will be used to 
determine light interception by both water and particles. In the MEP formulation, any interception of light 
not reflected leads to entropy production if the light is not converted to another energy potential, so silt 
laden water dissipates light energy as effectively as phytoplankton.  Consequently, increasing entropy 
production can be achieved via the formation of particles when none are present, which is effectively 
what phytoplankton achieve in the MEP context.  To formulate a MEP model for phototrophs, we 
calculate the light intercepted by each biological structure in a layer of water  thick at a depth of , 
which we define as S . By increasing the concentration of S  in a layer, the amount of light 
intercepted and potentially dissipated as heat increases, but the function does saturate at high S  
concentrations, as expected. The reaction rate equation (4) is modified for phototrophs because the 
maximum rate is set by the photon flux, so the rate parameter, , is replaced by, 

1558710



11 
 

 
S

S
 (7) 

Free energy for the phototrophic reaction (6) and associated entropy production can be readily calculated 
for a given value of , concentrations of substrates and products and accounting for the thermodynamic 
efficiency for converting electromagnetic radiation to chemical potential (Candau 2003). 

4.4.2 Internal Storage, Temporal Strategy and Variable Stoichiometry We assume that the elemental 
composition for biological structure, S , that produces catalytic activity is fixed, and its elemental 
composition is given by, ; however, we allow C, N, P and Fe (and any other 
elements) to be internally stored and concentrated as CH2O S , NH3 S , H3PO4 S  and Fe 

S  in a manner similar to Droop’s (1973) approach and used in the Darwin model (Ward et al. 2012). 
The combined core composition with variable internal pools allows elemental composition of S  to vary 
over time and space as well as a means to implement temporal strategies as discussed in Section 4.2. 
Additional metabolic reactions to those in Table 1 are used to account for resource uptake into internal 
pools that catalyst is synthesized from.  This introduces new state variables for the internal pools for each 
biological structure, but these additions will allow us to directly assess the importance of K- versus R- 
selection (Pianka 1970, Salmaso et al. 2015) on entropy production over global scales.  We will use 
internal pool volume to set biological structure size and consequently its sinking velocity as used in the 
Darwin models (Ward et al. 2012, 2014).  

4.4.3 Monte Carlo with competition replaces optimization In applications to date, we have determined 
how thermodynamic efficiencies, , and partitioning of S  to sub-reactions given by  vary over time 
by solving a receding horizon optimal control problem (Vallino 2010, Algar & Vallino 2014, Vallino et 
al. 2014) or a standard optimization problem for steady state systems (Vallino 2011). While this approach 
works well for zero-dimensional problems and has been extended to 1D problems with some success, the 
optimization procedure becomes computationally demanding for 2 or more dimensions.  We believe the 
approach developed for the Darwin models can be used to solve the MEP problem for higher dimensions.     

In a simple two-box MEP ocean model (Vallino 2011), a Monte Carlo approach showed that multiple 
solutions produce entropy at very near the maximum rate; however, in the steady state analysis we did not 
examine competition between multiple  and   parameterizations for each S  at the same time. The 
Darwin model uses a combination of Monte Carlo-like simulation coupled with Darwinian-like 
competition that allows the model to find the optimum solution for a given subset of traits or phenotypes 
from the set of all possible traits.  This approach can also be used to solve the MEP problem in higher 
spatial dimensions in the MITgcm. In the simplest version of the MEP ocean model (specialists only), we 
would have five catalysts types (Table 1, ), each having approximately 6 control variables (one 

 and 5 ). As in previous implementations of the Darwin model (Follows et al. 2007), we will 
populate the model with approximately 100 (or more) S  each with a different parameterization selected 
at random for  and .  Because some parameterizations will not produce viable catalysts, we can cull 
them from available parameter space to speed subsequent searches.  

As a first proof of concept, encouraged by previous reviewers, we have tested the Darwin approach for 
solving the MEP problem using the two-box model (Vallino 2011).  Preliminary results show that food 
web structure is important, but even simple viral-like predation structures (unique prey-predator pairs) can 
find MEP solutions purely by competition (Fig. 4a). Interestingly, these models do not exhibit 
competitive exclusion and retain a “rare biosphere” (Sogin et al. 2006) (Fig. 4b). Furthermore, we 
demonstrate that increasing the number of degrees of freedom in the current Darwin model (i.e., number 
of species) results in greater entropy production (Fig. 1c), which is consistent with MEP theory regarding 
sufficient degrees of freedom (Ozawa et al. 2003).  

5. Model simulations and Hypotheses Testing 
The MEP metabolic network addition to the Darwin model will be used to test the following hypotheses: 
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Hypothesis I:  The metabolic network with associated biological structures that self-assembles in a given 
environment from a diverse set of control variables will maximizes entropy production.  
Approach: We will populate a global ocean model with a functionally diverse population of virtual 
plankton to test whether the emergent community structure reflects the MEP state. 

Hypothesis II: We expect that dynamic environments will host a greater percentage of generalist versus 
specialists, and the opposite distribution to be the case for stable environments. 
Approach: We will examine the communities in dynamic environments, such as in temperate zones, with 
those associated with stable environments, such as in the tropics. Specialists are defined as those 
biological structures with only one anabolic and one catabolic reaction, while generalists are defined with 
more than one anabolic or catabolic reaction (Table 1). Environmental dynamics will be based on the 
fluctuation of nutrients in a localized area.  

Hypothesis III: Implementing a MEP-based representation of the ecosystem and biogeochemical cycles 
will produce a more robust model that can be extrapolated beyond data used for its calibration. This will 
improve forecasts of how future global changes may alter functional biogeography of the ocean. 
Approach: We will develop, implement and test the MEP-based framework and evaluate the plausibility 
of solutions for key biogeochemical distributions and fluxes under forcing conditions beyond those used 
for calibration, such as high CO2, high temperature and/or high nutrients, or hindcast to conditions that 
existed in the distant past (Norris et al. 2013) for comparison to available paleoceanographic data.    

5.1 Entropy production in Darwin Model (Hypothesis I) 
To test the hypothesis that natural communities organize to maximize entropy production and that the 
MEP conjecture is a useful metric to guide model development, we will generate an ensemble of solutions 
for global ocean biogeochemistry from different initial concentrations and parameterizations of the 
biological structures, including a random mixing of generalists and specialists.   Total internal entropy 
production for each ensemble member will be calculated and each solution ranked by entropy production.  
Because we will not be able to span the entire parameter space, we expect that some solutions in the 
ensemble will produce more entropy than others.  For each solution 
member, we will also calculate a goodness of fit (GOF) metric 
between model output and oceanographic observations, such as 
NO3

- concentration and primary production (see below).  If the 
MEP conjecture is correct, we should find a linear correlation 
between total entropy production and the GOF metric.  On the 
contrary, if we find that there exists ensemble members with 
relatively low entropy production, but high GOF metric, then we 
can conclude that MEP is not a useful tool for describing marine 
biogeochemistry; that is, the main hypothesis can be falsified. 

5.2 Generalists versus Specialists (Hypothesis II) 
To examine the hypothesis (and its complement) that generalist 
will perform better in variable environments, we will construct a 
rate of change (ROC) metric based on the time derivative of several 
modeled nutrients (see below) averaged over an appropriate spatial 
scale for each solution in the simulated ensemble.  Within each 
parcel, we will assess the proportion of generalist (i.e., have more 
than one anabolic or catabolic reaction) to specialists.  If our 
hypothesis is correct, we should find a positive correlation between 
concentration of generalist relative to specialists and the ROC 
metric. On a related hypothesis, we also expect to find that in areas 
with a high ROC metric, a higher number of biological structures 
with large storage pools for C, N, P and/or Fe will be found 
compared to areas with low ROC metric (See Section 4.4.2). We 
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will also explore a corollary that loss of metabolic function, such as N2 fixation, might be more likely if 
only specialists exist, since a transient event of sufficient duration can result in local extinction.  To 
explore this idea we will conduct simulations where generalists are not allowed and examine the 
distribution of metabolic functions compared to the nominal simulations. 

We will also explore a third corollary. Organisms that integrate entropy production over longer time 
scales can exploit resources separated over space more effectively than organisms that maximize entropy 
production over short time scales (Vallino 2011). For example, diel vertical migration (DVM) allows 
phytoplankton to access nutrients in deep water at night and energy (light) near the surface during the day 
(Inoue & Iseri 2012), and zooplankton effectively transport nutrients from deep to surface waters by 
DVM as well (Steinberg et al. 2002, Haupt et al. 2010).  To test this corollary, we will produce an 
ensemble of solutions where internal storage of C, N, P and Fe is not permitted.  Bringing an MEP 
perspective to the hypothesis of Tozzi et al. (2004), if resources are being collected at one location/time to 
facilitate energy dissipation in another region/time, we expect entropy production to decrease as well as 
become more homogenously distributed over the model domain compared to the nominal simulations.  

Nutrient cycling is of course very important in the surface ocean because it allows for greater free energy 
dissipation when resources for catalyst synthesis are limited (consider Fig. 1). In oligotrophic areas, such 
as subtropical gyres, we expect a greater proportion of biomass allocated to structure turnover (rxn. , 
Table 1) because predation can enhance primary productivity under nutrient limitation (Selph et al. 2003, 
Schmitz et al. 2010, Trommer et al. 2012). We also expect cells with lower C, N, P and Fe pools because 
smaller cells sink slower in the model formulation.  Because of the importance of the marine N cycle 
(Zehr & Kudela 2010), we will explore solutions regarding the energetics tradeoffs associated with N2 
fixation versus N cycling and compare our MEP results to Darwin model results (Monteiro et al. 2011). 

5.3 Robust Extrapolation (Hypothesis III) 
If the MEP conjecture proves to be a useful design criterion (Hypothesis I), then we expect models based 
on MEP should be more robust to predicting biogeochemistry under conditions were calibration data are 
unavailable because MEP would apply under those conditions as well.  However, testing this hypothesis 
is challenging because the paleoceanographic data are sparse.  Consequently, this hypothesis cannot be 
rigorously tested, but we will explore how the MEP model performs under paleo conditions based on 
reconstructed expectations (Canfield 2006, Norris et al. 2013), or in the oxygen minimum zones (Canfield 
et al. 2010, Reed et al. 2014). 

5.4 Global maps of metabolic function (Project Output) 
With the rapid increase in the use of metagenomics, metatranscriptomics and proteomics (Saito et al. 
2014) in oceanographic surveys, there is a growing need to incorporate such observations in global ocean 
models.  Currently, microbial ecologist rely on linear correlation models to extrapolate sparsely observed 
genomic information to global scale maps based on independent variables, such as season, time of day, 
latitude, month, temperature and salinity (Ladau et al. 2013).  While regression analysis does provide 
some useful interpretation, regression does not provide any information regarding processes that underpin 
the relationships, nor are regressions very useful as prognostic tools.  Consequently, we will present 
model outputs from the MEP model in a functional context (Table 1) that can be related to metagenomic, 
metatranscriptomic and proteomic data, i.e. functionally, rather than taxonomically, based mappings. Our 
model will also have information on how functional genes may be packaged in the context of specialist 
(single function) versus generalist (multiple functions). Global maps of functional distributions can then 
be used to assess omics data and provide visualizations and hypotheses which could help shape future 
omics surveys. In particular, the concentration of biological structure, S  allocated to a particular function 
is proportional to metagenomic data, while reaction rate (governed by ) is proportional to gene 
expression, or metatranscriptomic/proteomic data.  

5.5 Metrics from model solutions. 
5.5.1 Goodness of Fit Metric Our GOF metric will be evaluated using a standard root mean squared 
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(RMS) error to assess both location and magnitude of error between model solution and observations. We 
will evaluate cumulative RMS model-data differences for key biogeochemical fluxes including global 
primary production (see Fig. 1a,b for example comparison) and export production (or the ef-ratio), the 
pattern of air-sea flux of CO2 and patterns of nitrogen fixation. In addition, we will quantitatively evaluate 
the simulations of the global scale distributions of macro-nutrients (specifically inorganic nitrogen 
species, phosphate, Si), micro-nutrients (here Fe) as well as derived indicators of biogeochemical 
function, e.g. P*=PO4

3- – NO3
-/16. We will evaluate the modeled distribution of DOC, DON, DOP and 

the profile of sinking particle fluxes. We will use numerous data sets to evaluate the RMS error for each 
global simulation. These include global, seasonal primary productivity derived from remote sensing 
products using the VGPM (Behrenfeld & Falkowski 1997); global distributions of biogeochemically 
significant species: nitrate, nitrite, phosphate, dissolved inorganic carbon, dissolved oxygen (GLODAP; 
Key et al. (2004) and/or World Ocean Atlas, 2009); regional variations in export efficiency, e-f ratio 
(JGOFS and other process study data; Buesseler and Boyd (2009)).  
5.5.2 Rate of Change Metric The ROC metric will be determined at each model grid point based on the 
time derivative for each modeled nutrient (NH4

+, NO3
-, NO2

-, PO4
3-, etc.).  The maximum rate at each grid 

point will be selcted, then the average determined over an appropriate spacial scale (i.e., patch, ~106 km2).  
This will give us an index for how quickly resouces are changing in a given area. 

6. Broader Impacts 
With the projected increases in global temperature, atmospheric CO2 (and associated decrease in ocean 
pH), and nitrogen loading to coastal oceans from terrestrial ecosystems, there is a growing societal need 
to understand how biogeochemical processes will respond to these changes. Results from our project will 
bring a thermodynamic perspective to marine biogeochemistry models that should result in their 
improved performance.  Our MEP-based model should improve forecast accuracy when extrapolate 
beyond available calibration data and our thermodynamic extension to the Darwin model should improve 
understanding and prediction of evolutionary strategies. Global maps of microbial metabolic function that 
will be produced by the project will allow comparison to the increasingly used omics-based surveys and 
should provide a mechanistic context to understand those observations.  

The MIT ocean model is open source and freely available at http://www.mitgcm.org. All algorithm and 
code developments from this project will be published and freely available. We regularly host training 
visits and provide user support. Proposed developments will be released as part of the source code. The 
MIT group regularly participates in outreach events, communicating fundamental understanding and 
visualizations of marine phytoplankton communities and their role in the global carbon cycle. Continuing 
activities include (i) a collaboration with Dr. Jen Frazier on an interactive exhibit in the San Francisco 
Exploratorium about the diversity of marine phytoplankton (Living Liquids). (ii) A collaboration with Dr. 
Isabelle Klauk and colleagues at the City of Science and Industry’s planetarium in Paris, where 
visualizations of our ocean models are featured in narrated shows discussing the Earth as viewed from 
space. The Follows group regularly participate in local science events using live microscope projections 
of plankton tows from the Charles River and local coast to illustrate to the general public the richness of 
microbial life in natural waters and to discuss their role in the carbon cycle. Forthcoming events include 
participation in the annual Cambridge Science Festival (April 2016; MIT Museum) and at MIT’s Carlson 
Lecture at the New England Aquarium (October 2015).  

We will work with the undergraduate programs at MBL and MIT to train new students at the interface of 
biogeochemical modeling, molecular microbiology, and microbial biochemistry. We will do this through 
both undergraduate classroom teaching and research projects and internships. PI Vallino is a faculty 
member in the Semester in Environmental Science (SES) program at MBL (http://courses.mbl.edu/SES), 
which annually draws up to 24 juniors and seniors from over 60 colleges and universities around the 
country and draws many students in underrepresented groups in science (classes average 84% women and 
several minority colleges and universities participate in the SES program). Students give a public 
presentation to the Woods Hole community and write “journal ready” manuscripts regarding their 
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research that are published on the SES web site.  In each of the three project years, Vallino will mentor 
two SES independent student research projects associated with thermodynamic constraints on microbial 
processes involving laboratory or field work.  Follows co-teaches an undergraduate Ecology class (1.018) 
at MIT. Concepts of thermodynamics, metabolism and marine microbial ecology related to this project 
are key elements of the class. Results from this research will provide materials with which to discuss if 
and how ecosystems reflect organization related to overarching thermodynamic and energetic principles. 
We will link classical ideas from Odum and Lotka to current and emerging perspectives. We will also 
seek undergraduate participation through the Woods Hole Partnership Educational Program (PEP) 
(http://www.woodsholediversity.org/pep/). PEP specifically targets underrepresented groups in science 
and exposes them to multiple disciplines and approaches to research-based science by pairing students 
with mentors at research labs in Woods Hole. PEP students present their research results to the Woods 
Hole community at a one day PEP symposium held in mid-August. Project PIs will train summer students 
in the use of models for understanding microbial processes and ocean biogeochemistry. 

To broaden exposure of MEP concepts in marine biogeochemistry and explore its place in the broader 
context of recent advances in metabolic modeling and theory, we plan to propose a workshop to NSF’s 
Ocean Carbon & Biogeochemistry (OCB) Program to be held in year 2. The workshop, provisionally 
entitled “Thermodynamic constraints on microbial metabolism and biogeochemical cycles” would bring 
together experts in MEP along with experts in thermodynamic and redox cascades from cells, to systems 
biology through to global biogeochemical cycles. We feel the time is right to ask if and how these new, or 
as yet under-exploited tools, can help advance marine ecology and biogeochemistry in the forthcoming 
years.      

Finally, this project will support one postdoctoral scholar in this new interface between ocean 
biogeochemistry modeling, thermodynamic modeling and their integration with molecular observations. 
The postdoctoral scholar will have the opportunity to conduct research at both MBL and MIT.   

7. Results from prior NSF grants 
Theory: Biological systems organize to maximize entropy production subject to information and 
biophysicochemical constraints. EF-0928742, 9/2009-8/2013: $750,000. PIs: Vallino and Huber. 
Intellectual Merit: This project examined the hypothesis that biological systems evolve and organize in a 
manner that results in MEP. One of the project's main hypotheses is that living systems differ from abiotic 
systems, such as fire, by integrating entropy production over time using information stored in the 
organismal metagenome. A MEP-based model developed during the project has been able to simulate 
observations using only two adjustable parameters. Model results indicate the communities are inherently 
well adapted to handling cyclic energy inputs up to periods of at least 20 days. Broader Impacts: 
Experimental and modeling results to date have been presented at 8 international conferences and 
numerous departmental seminars, five papers have been published (Vallino 2010, Vallino 2011, Algar & 
Vallino 2014, Vallino et al. 2014, Vallino & Algar 2016), one submitted (Chapman et al. submitted) and 
one soon-to-be submitted (Fernandez Gonzalez et al. to be submitted).  The project has supported 9 
undergraduate research projects and one postdoc. 

M. Follows and C. Hill, OCE-1029900 DATES, 09/01/2010-08/31/2013, $969,769, The Biogeography 
of Primary Producers in the subpolar North Atlantic. Intellectual Merit: Through analysis of the 
Continuous Plankton Recorder Survey data, idealized modeling and numerical simulations of regional 
circulation and ecosystem, we sought to understand the organization of diatom and dinoflagellate 
populations in the North Atlantic. Twelve refereed publications included Ward et al. (2011) examining 
the costs and benefits of mixotrophy in plankton; Barton et al (2013)  a trait-based characterization of 
diatom and dinoflagellate variations in space and time in the CPR data set, and a pair of manuscripts 
exploring controls on the size-structure of plankton populations (Ward et al. 2012, Ward et al. 2014). 
Broader Impacts: This project brought significant international links through connections to the Euro-
BASIN project: a funded EU program, for example creating connections between the Follows lab and the 
Center for Ocean Life (DTU, Copenhagen).   
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